kd樹的簡單實現
kd樹在特徵匹配中有著重要的作用,關於kd樹的詳解這裡就不再介紹了,下面給出了kd樹的生成過程:
#include<iostream>
#include<cstdlib>
#include<string>
#include<vector>
#include <algorithm>
using namespace std;
#define K 2
typedef float ElemType;
typedef int RangeInt;
typedef int SplitInt;
typedef int SampleInt;
typedef struct Kd_Tree
{
ElemType Node_Data[K];
ElemType Range;
SplitInt Split;
struct Kd_Tree* Left;
struct Kd_Tree* Right;
struct Kd_Tree* Parent;
}Kd_Tree,*_Kd_Tree;
int Find_Max_Range_Item(vector< vector<ElemType> > &Data_Set,SplitInt *Space_Range,SampleInt& nSample)
{
ElemType* avg=(ElemType*)malloc(nSample*sizeof(ElemType));
memset((void*)avg,0.0,nSample*sizeof(ElemType));
ElemType* var=(ElemType*)malloc(nSample*sizeof(ElemType));
memset(var,0.0,nSample*sizeof(ElemType));
ElemType max=0.0;
int index=0;
for(int j=0;j<=K;j++)
{
for(int i=0;i<nSample;i++)
{
if(j<K) avg[j]+=Data_Set[i][j];
if(j>0) var[j-1]+=(Data_Set[i][j-1]-avg[j-1])*(Data_Set[i][j-1]-avg[j-1]);
}
if(j<K) avg[j]/=K;
if(j>0) { var[j-1]/=K; if(var[j-1]>max) { max=var[j-1]; index=j-1; } }
}
if(avg) free(avg);
if(var) free(var);
return index;
}
void swap(vector< vector<ElemType> > &Data_Set,int i,int j)
{
vector<ElemType> tmp(K);
for(int t=0;t<K;t++)
{
tmp[t]=Data_Set[i][t];
Data_Set[i][t]=Data_Set[j][t];
Data_Set[j][t]=tmp[t];
}
}
int partition(vector< vector<ElemType> > &Data_Set,int Range_Item_value,int left,int right,int nSample)
{
ElemType base_element=Data_Set[left][Range_Item_value];
int i=left;
int j=right+1;
for(;;)
{
while(Data_Set[++i][Range_Item_value]<base_element&&(i+1 <nSample));
while(Data_Set[--j][Range_Item_value]>base_element&&(j-1>-1));
if(i<j) swap(Data_Set,i,j);
else break;
}
swap(Data_Set,left,j);
return j;
}
void _quick_sort(vector< vector<ElemType> > &Data_Set,int Range_Item_Value,int left,int right,int nSample)
{
if(left<right)
{
int pivot=partition(Data_Set,Range_Item_Value,left,right,nSample);
_quick_sort(Data_Set,Range_Item_Value,left,pivot-1,nSample);
_quick_sort(Data_Set,Range_Item_Value,pivot+1,right,nSample);
}
}
void Sort_Data_Set(vector< vector<ElemType> > &Data_Set,SampleInt& nSample,int Range_Item_Value)
{
_quick_sort(Data_Set,Range_Item_Value,0,nSample-1,nSample);
}
/*確定split域:對於所有描述子資料(特徵向量),統計它們在每個維上的資料I方差。
以SURF特徵為例,描述子為64維,可計算64個方差。挑選出最大值,對應的域就是split
域的值。資料方差大表明沿該座標軸方向上的資料分散的比較開,在這個方向上的資料分散
得比較開,在這個方向上進行資料分割有著較好的解析度)*/
bool Create_KD_Tree(_Kd_Tree* pTree,_Kd_Tree *tree,vector< vector<ElemType> > &Data_Set,SplitInt *Space_Range,SampleInt& nSample)
{
if(Data_Set.size()==0)
{
printf("finish\n");
return false;
}
int Range_Item_Value=Find_Max_Range_Item(Data_Set,Space_Range,nSample);
printf("Item=%d\n",Range_Item_Value);
Sort_Data_Set(Data_Set,nSample,Range_Item_Value);
printf("\n");
for(int i=0;i<nSample;i++)
{
for(int j=0;j<K;j++)
{
printf("%f ",Data_Set[i][j]);
}
printf("\n");
}
printf("\n");
int mid_nSample=nSample/2;
printf("mid=%d\n",mid_nSample);
int Left_nSample=mid_nSample;
int Right_nSample=nSample-Left_nSample-1;
//int* left_Space_Range=(int*)malloc(Left_nSample*sizeof(int));
//int* right_Space_Range=(int*)malloc(Right_nSample*sizeof(int));
//memcpy(left_Space_Range,Space_Range,Left_nSample*sizeof(int));
//memcpy(right_Space_Range,Space_Range+Left_nSample,Right_nSample*sizeof(int));
vector< vector<ElemType> > Left_Data_Set(Left_nSample,vector<ElemType>(K));
vector< vector<ElemType> > Right_Data_Set(Right_nSample,vector<ElemType>(K));
for(int i=0;i<Left_nSample;i++)
{
for(int j=0;j<K;j++)
Left_Data_Set[i][j]=Data_Set[i][j];
}
for(int i=0;i<Right_nSample;i++)
{
for(int j=0;j<K;j++)
Right_Data_Set[i][j]=Data_Set[i+Left_nSample+1][j];
}
(*tree)->Split=Range_Item_Value;
(*tree)->Range=Data_Set[mid_nSample][Range_Item_Value];
for(int i=0;i<K;i++)
(*tree)->Node_Data[i]=Data_Set[mid_nSample][i];
printf("data=%f\n",Data_Set[mid_nSample][0]);
if(Left_nSample>1)
{
(*tree)->Left=(_Kd_Tree)malloc(sizeof(Kd_Tree));
Create_KD_Tree(tree,&((*tree)->Left),Left_Data_Set,Space_Range,Left_nSample);
}
else if(Left_nSample==1)
{
(*tree)->Left=(_Kd_Tree)malloc(sizeof(Kd_Tree));
for(int i=0;i<K;i++)
(*tree)->Left->Node_Data[i]=Data_Set[Left_nSample-1][i];
(*tree)->Left->Range=-1.0;
(*tree)->Left->Split=-1.0;
(*tree)->Left->Left=NULL;
(*tree)->Left->Right=NULL;
(*tree)->Left->Parent=(*tree);
}
else
{
(*tree)->Left=NULL;
}
if(Right_nSample>1)
{
(*tree)->Right=(_Kd_Tree)malloc(sizeof(Kd_Tree));
Create_KD_Tree(tree,&((*tree)->Right),Right_Data_Set,Space_Range,Right_nSample);
}
else if(Right_nSample==1)
{
(*tree)->Right=(_Kd_Tree)malloc(sizeof(Kd_Tree));
for(int i=0;i<K;i++)
(*tree)->Right->Node_Data[i]=Data_Set[nSample-Right_nSample][i];
(*tree)->Right->Node_Data[K];
(*tree)->Right->Range=-1.0;
(*tree)->Right->Split=-1.0;
(*tree)->Right->Left=NULL;
(*tree)->Right->Right=NULL;
(*tree)->Right->Parent=(*tree);
}
else
{
(*tree)->Right=NULL;
}
(*tree)->Parent=(*pTree);
//if(left_Space_Range) free(left_Space_Range);
//if(right_Space_Range) free(right_Space_Range);
return true;
}
void Print_KD_Tree(_Kd_Tree tree)
{
if(!tree) return ;
printf("(");
for(int i=0;i<K;i++)
printf("%f ",tree->Node_Data[i]);
printf(")\n");
Print_KD_Tree(tree->Left);
Print_KD_Tree(tree->Right);
}
int main()
{
//create kd Tree
_Kd_Tree pTree=NULL;
_Kd_Tree Tree=(_Kd_Tree)malloc(sizeof(Kd_Tree));
int nSample=6;
SplitInt* Space_Range=(SplitInt*)malloc(K*sizeof(SplitInt));
for(int i=0;i<K;i++)
Space_Range[i]=i;
printf("Start Input data set!\n");
vector< vector<ElemType> > Data_Set(nSample,vector<ElemType>(K));
for(int i=0;i<nSample;i++)
for(int j=0;j<K;j++)
{
scanf("%f",&Data_Set[i][j]);
}
printf("Finish Input data set!\n");
printf("Start create kd_tree!\n");
Create_KD_Tree(&pTree,&Tree,Data_Set,Space_Range,nSample);
printf("Finish Create kd_tree!\n");
printf("Start Print kd_tree!\n");
Print_KD_Tree(Tree);
printf("Finish Print kd_tree!\n");
if(Tree) printf("success\n");
}
相關文章
- k近鄰演算法的實現:kd樹演算法
- 字典樹(字首樹)簡單實現
- Unity嘗試實現簡單的行為樹-01Unity
- JavaScript實現簡單二叉查詢樹JavaScript
- AOP的簡單實現
- 簡單的 HashMap 實現HashMap
- 實現簡單的BitMap
- ArrayList的簡單實現
- 紅黑樹其實很簡單
- 並行化最佳化KD樹演算法:使用C#實現高效的最近鄰搜尋並行演算法C#
- 簡單的實現vue原理Vue
- 簡單的實現React原理React
- [Linux]簡單的shell實現Linux
- java實現簡單的JDBCJavaJDBC
- Promise 簡單實現Promise
- ReadableStream 簡單實現
- Express 簡單實現Express
- AspectJ簡單實現
- FastClick簡單實現AST
- B 樹的簡單認識
- 實現一個簡單的TomcatTomcat
- java實現棧的簡單操作Java
- Promise的使用及簡單實現Promise
- netty 實現簡單的rpc呼叫NettyRPC
- Android中SharePreferences的簡單實現Android
- SpringBoot與WebService的簡單實現Spring BootWeb
- 互斥鎖mutex的簡單實現Mutex
- React + Antd實現簡單的todolistReact
- Unity實現簡單的物件池Unity物件
- Promise 基本方法的簡單實現Promise
- 簡單、好懂的Svelte實現原理
- 精簡版 koa 簡單實現
- 簡單版Promise實現Promise
- 簡單實現vuex原理Vue
- 物件池簡單實現物件
- React 簡單實現(一)React
- 感知機簡單實現
- 瀑布流簡單實現
- 如何簡單實現ELT?