百聞不如一碼!手把手教你用Python搭一個Transformer

大資料文摘發表於2019-04-22

與基於RNN的方法相比,Transformer 不需要迴圈,主要是由Attention 機制組成,因而可以充分利用python的高效線性代數函式庫,大量節省訓練時間。

可是,文摘菌卻經常聽到同學抱怨,Transformer學過就忘,總是不得要領。

怎麼辦?那就自己搭一個Transformer吧!

百聞不如一碼!手把手教你用Python搭一個Transformer

上圖是谷歌提出的transformer 架構,其本質上是一個Encoder-Decoder的結構。把英文句子輸入模型,模型會輸出法文句子。

要搭建Transformer,我們必須要了解5個過程:

  • 詞向量層

  • 位置編碼

  • 建立Masks

  • 多頭注意層(The Multi-Head Attention layer)

  • Feed Forward層

詞向量

詞向量是神經網路機器翻譯(NMT)的標準訓練方法,能夠表達豐富的詞義資訊。

在pytorch裡很容易實現詞向量:

class Embedder(nn.Module): def __init__(self, vocab_size, d_model): super().__init__() self.embed = nn.Embedding(vocab_size, d_model) def forward(self, x):         return self.embed(x)

當每個單詞進入後,程式碼就會查詢和檢索詞向量。模型會把這些向量當作引數進行學習,並隨著梯度下降的每次迭代而調整。

給單詞賦予上下文語境:位置程式設計

模型理解一個句子有兩個要素:一是單詞的含義,二是單詞在句中所處的位置。

每個單詞的嵌入向量會學習單詞的含義,所以我們需要輸入一些資訊,讓神經網路知道單詞在句中所處的位置。

Vasmari用下面的函式建立位置特異性常量來解決這類問題:

百聞不如一碼!手把手教你用Python搭一個Transformer

這個常量是一個2D矩陣。Pos代表了句子的順序,i代表了嵌入向量所處的維度位置。在pos/i矩陣中的每一個值都可以通過上面的算式計算出來。

百聞不如一碼!手把手教你用Python搭一個Transformer

位置編碼矩陣是一個常量,它的值可以用上面的算式計算出來。把常量嵌入矩陣,然後每個嵌入的單詞會根據它所處的位置發生特定轉變。

位置編輯器的程式碼如下所示:

class PositionalEncoder(nn.Module): def __init__(self, d_model, max_seq_len = 80): super().__init__() self.d_model = d_model # create constant 'pe' matrix with values dependant on # pos and i pe = torch.zeros(max_seq_len, d_model) for pos in range(max_seq_len): for i in range(0, d_model, 2): pe[pos, i] = \ math.sin(pos / (10000 ** ((2 * i)/d_model))) pe[pos, i + 1] = \ math.cos(pos / (10000 ** ((2 * (i + 1))/d_model))) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): # make embeddings relatively larger x = x * math.sqrt(self.d_model) #add constant to embedding seq_len = x.size(1) x = x + Variable(self.pe[:,:seq_len], \ requires_grad=False).cuda()         return x

以上模組允許我們向嵌入向量新增位置編碼(positional encoding),為模型架構提供資訊。

在給詞向量新增位置編碼之前,我們要擴大詞向量的數值,目的是讓位置編碼相對較小。這意味著向詞向量新增位置編碼時,詞向量的原始含義不會丟失。

建立Masks

Masks在transformer模型中起重要作用,主要包括兩個方面:

在編碼器和解碼器中:當輸入為padding,注意力會是0。

在解碼器中:預測下一個單詞,避免解碼器偷偷看到後面的翻譯內容。

輸入端生成一個mask很簡單:

batch = next(iter(train_iter)) input_seq = batch.English.transpose(0,1) input_pad = EN_TEXT.vocab.stoi['<pad>'] # creates mask with 0s wherever there is padding in the input input_msk = (input_seq != input_pad).unsqueeze(1)

同樣的,Target_seq也可以生成一個mask,但是會額外增加一個步驟:

# create mask as before target_seq = batch.French.transpose(0,1) target_pad = FR_TEXT.vocab.stoi['<pad>'] target_msk = (target_seq != target_pad).unsqueeze(1) size = target_seq.size(1) # get seq_len for matrix nopeak_mask = np.triu(np.ones(1, size, size), k=1).astype('uint8') nopeak_mask = Variable(torch.from_numpy(nopeak_mask) == 0) target_msk = target_msk & nopeak_mask

目標語句(法語翻譯內容)作為初始值輸進解碼器中。解碼器通過編碼器的全部輸出,以及目前已翻譯的單詞來預測下一個單詞。

因此,我們需要防止解碼器偷看到還沒預測的單詞。為了達成這個目的,我們用到了nopeak_mask函式:

百聞不如一碼!手把手教你用Python搭一個Transformer

當在注意力函式中應用mask,每一次預測都只會用到這個詞之前的句子。

多頭注意力

一旦我們有了詞向量(帶有位置編碼)和masks,我們就可以開始構建模型層了。

下圖是多頭注意力的結構:

百聞不如一碼!手把手教你用Python搭一個Transformer

多頭注意力層,每一個輸入都會分成多頭(multiple heads),從而讓網路同時“注意”每一個詞向量的不同部分。

V,K和Q分別代表“key”、“value”和“query”,這些是注意力函式的相關術語,但我不覺得解釋這些術語會對理解這個模型有任何幫助。

在編碼器中,V、K和G將作為詞向量(加上位置編碼)的相同拷貝。它們具有維度Batch_size * seq_len * d_model.

在多頭注意力中,我們把嵌入向量分進N個頭中,它們就有了維度(batch_size * N * seq_len * (d_model / N).

我們定義最終維度 (d_model / N )為d_k。

讓我們來看看解碼器模組的程式碼:

class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout = 0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model)

def forward(self, q, k, v, mask=None): bs = q.size(0) # perform linear operation and split into h heads k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) # transpose to get dimensions bs * h * sl * d_model k = k.transpose(1,2) q = q.transpose(1,2) v = v.transpose(1,2) # calculate attention using function we will define next scores = attention(q, k, v, self.d_k, mask, self.dropout) # concatenate heads and put through final linear layer concat = scores.transpose(1,2).contiguous()\ .view(bs, -1, self.d_model) output = self.out(concat)         return output

計算注意力

百聞不如一碼!手把手教你用Python搭一個Transformer計算注意力的公式

百聞不如一碼!手把手教你用Python搭一個Transformer圖解公式

這是另一個我們需要了解的公式,上面這幅圖很好地解釋了這個公式。

圖中的每個箭頭代表了公式的一部分。

首先,我們要用Q乘以K的轉置函式(transpose),然後通過除以d_k的平方根來實現scaled函式。

方程中沒有顯示的一個步驟是masking。在執行Softmax之前,我們使用mask,減少輸入填充(padding)的值。

另一個未顯示的步驟是dropout,我們將在Softmax之後使用它。

最後一步是在目前為止的結果和V之間做點積(dot product)。

下面是注意力函式的程式碼:

def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v)     return output

前饋網路

好了,如果你現在已經理解以上部分,我們就進入最後一步!

這一層由兩個線性運算組成,兩層中夾有relu和dropout 運算。

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff=2048, dropout = 0.1):
        super().__init__()
        # We set d_ff as a default to 2048
        self.linear_1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model)
    def forward(self, x):
        x = self.dropout(F.relu(self.linear_1(x)))
        x = self.linear_2(x)
        return x

最後一件事:歸一化

在深度神經網路中,歸一化是非常重要的。它可以防止層中值變化太多,這意味著模型訓練速度更快,具有更好的泛化。


百聞不如一碼!手把手教你用Python搭一個Transformer

我們在編碼器/解碼器的每一層之間歸一化我們的結果,所以在構建我們的模型之前,讓我們先定義這個函式:

class Norm(nn.Module):
    def __init__(self, d_model, eps = 1e-6):
        super().__init__()
    
        self.size = d_model
        # create two learnable parameters to calibrate normalisation
        self.alpha = nn.Parameter(torch.ones(self.size))
        self.bias = nn.Parameter(torch.zeros(self.size))
        self.eps = eps
    def forward(self, x):
        norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
        / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
        return norm

把所有內容結合起來!

如果你已經清楚了上述相關細節,那麼你就能理解Transformer模型啦。剩下的就是把一切都組裝起來。

讓我們再來看看整體架構,然後開始構建:

百聞不如一碼!手把手教你用Python搭一個Transformer

最後一個變數:如果你仔細看圖,你可以看到編碼器和解碼器旁邊有一個“Nx”。實際上,上圖中的編碼器和解碼器分別表示編碼器的一層和解碼器的一層。N是層數的變數。比如,如果N=6,資料經過6個編碼器層(如上所示的結構),然後將這些輸出傳給解碼器,解碼器也由6個重複的解碼器層組成。

現在,我們將使用上面模型中所示的結構構建編碼器層和解碼器層模組。在我們構建編碼器和解碼器時,我們可以決定層的數量。

# build an encoder layer with one multi-head attention layer and one # feed-forward layer

class EncoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout = 0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.attn = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model)
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        
    def forward(self, x, mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn(x2,x2,x2,mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.ff(x2))
        return x
    
# build a decoder layer with two multi-head attention layers and
# one feed-forward layer

class DecoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout=0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.norm_3 = Norm(d_model)
        
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        self.dropout_3 = nn.Dropout(dropout)
        
        self.attn_1 = MultiHeadAttention(heads, d_model)
        self.attn_2 = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model).cuda()

def forward(self, x, e_outputs, src_mask, trg_mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs,
        src_mask))
        x2 = self.norm_3(x)
        x = x + self.dropout_3(self.ff(x2))
        return x

# We can then build a convenient cloning function that can generate multiple layers:

def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

我們現在可以構建編碼器和解碼器了:

class Encoder(nn.Module):
    def __init__(self, vocab_size, d_model, N, heads):
        super().__init__()
        self.N = N
        self.embed = Embedder(vocab_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(EncoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)
    def forward(self, src, mask):
        x = self.embed(src)
        x = self.pe(x)
        for i in range(N):
            x = self.layers[i](x, mask)
        return self.norm(x)
    
class Decoder(nn.Module):
    def __init__(self, vocab_size, d_model, N, heads):
        super().__init__()
        self.N = N
        self.embed = Embedder(vocab_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(DecoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)
    def forward(self, trg, e_outputs, src_mask, trg_mask):
        x = self.embed(trg)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x, e_outputs, src_mask, trg_mask)
        return self.norm(x)

Transformer模型構建完畢!

class Transformer(nn.Module):
    def __init__(self, src_vocab, trg_vocab, d_model, N, heads):
        super().__init__()
        self.encoder = Encoder(src_vocab, d_model, N, heads)
        self.decoder = Decoder(trg_vocab, d_model, N, heads)
        self.out = nn.Linear(d_model, trg_vocab)
    def forward(self, src, trg, src_mask, trg_mask):
        e_outputs = self.encoder(src, src_mask)
        d_output = self.decoder(trg, e_outputs, src_mask, trg_mask)
        output = self.out(d_output)
        return output

# we don't perform softmax on the output as this will be handled
# automatically by our loss function

訓練模型

構建完transformer,接下來要做的是用EuroParl資料集進行訓練。編碼部分非常簡單,但是要等兩天,模型才會開始converge!

讓我們先來定義一些引數

d_model = 512
heads = 8
N = 6
src_vocab = len(EN_TEXT.vocab)
trg_vocab = len(FR_TEXT.vocab)

model = Transformer(src_vocab, trg_vocab, d_model, N, heads)

for p in model.parameters():
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

# this code is very important! It initialises the parameters with a
# range of values that stops the signal fading or getting too big.
# See this blog for a mathematical explanation.

optim = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)

現在,我們可以開始訓練了:

def train_model(epochs, print_every=100):
    model.train()

    start = time.time()
    temp = start
    
    total_loss = 0
    
    for epoch in range(epochs):
       
        for i, batch in enumerate(train_iter):

            src = batch.English.transpose(0,1)
            trg = batch.French.transpose(0,1)

            # the French sentence we input has all words except
            # the last, as it is using each word to predict the next
            
            trg_input = trg[:, :-1]
            
            # the words we are trying to predict
            
            targets = trg[:, 1:].contiguous().view(-1)
            
            # create function to make masks using mask code above
            
            src_mask, trg_mask = create_masks(src, trg_input)
            
            preds = model(src, trg_input, src_mask, trg_mask)
            
            optim.zero_grad()
            
            loss = F.cross_entropy(preds.view(-1, preds.size(-1)),
            results, ignore_index=target_pad)

            loss.backward()
            optim.step()
            
            total_loss += loss.data[0]
            if (i + 1) % print_every == 0:
                loss_avg = total_loss / print_every
                print("time = %dm, epoch %d, iter = %d, loss = %.3f,
                %ds per %d iters" % ((time.time() - start) // 60,
                epoch + 1, i + 1, loss_avg, time.time() - temp,
                print_every))
                total_loss = 0
                temp = time.time()


百聞不如一碼!手把手教你用Python搭一個Transformer

示例訓練輸出:經過幾天的訓練後,模型的損失函式收斂到了大約1.3。

測試模型

我們可以使用下面的函式來翻譯句子。我們可以直接輸入句子,或者輸入自定義字串。

翻譯器通過執行一個迴圈來工作。我們對英語句子進行編碼。把<sos> token輸進解碼器,編碼器輸出。然後,解碼器對第一個單詞進行預測,使用<sos> token將其加進解碼器的輸入。接著,重新執行迴圈,獲取下一個單詞預測,將其加入解碼器的輸入,直到<sos> token完成翻譯。

def translate(model, src, max_len = 80, custom_string=False):

    model.eval()

if custom_sentence == True:
        src = tokenize_en(src)
        sentence=\
        Variable(torch.LongTensor([[EN_TEXT.vocab.stoi[tok] for tok
        in sentence]])).cuda()

src_mask = (src != input_pad).unsqueeze(-2)
    e_outputs = model.encoder(src, src_mask)
    
    outputs = torch.zeros(max_len).type_as(src.data)
    outputs[0] = torch.LongTensor([FR_TEXT.vocab.stoi['<sos>']])

for i in range(1, max_len):
            
        trg_mask = np.triu(np.ones((1, i, i),
        k=1).astype('uint8')
        trg_mask= Variable(torch.from_numpy(trg_mask) == 0).cuda()
        
        out = model.out(model.decoder(outputs[:i].unsqueeze(0),
        e_outputs, src_mask, trg_mask))
        out = F.softmax(out, dim=-1)
        val, ix = out[:, -1].data.topk(1)
        
        outputs[i] = ix[0][0]
        if ix[0][0] == FR_TEXT.vocab.stoi['<eos>']:
            break

return ' '.join(
    [FR_TEXT.vocab.itos[ix] for ix in outputs[:i]]
    )

Transformer模型的構建過程大致就是這樣。想要獲取完整程式碼,可以進入下面這個Github頁面:

https://github.com/SamLynnEvans/Transformer

相關報導:

https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec

相關文章