我們解讀一下國外大牛寫的演算法,暈?前端為毛考這麼複雜的演算法,同事說微博面試也是這道題,我覺得要是真的面試考到了,把答題思路核心程式碼寫出來就可以了,不可能原模原樣的都寫出來,連一個賦值都不帶遺漏的那種,總之思路要對,思路要對,思路要對
function getCombBySum(array,sum,tolerance,targetCount){
var util = {
/*
get combination from array
arr: target array
num: combination item length
return: one array that contain combination arrays
*/
/*獲取所有的可能組合
如果是[1,2,3,4,5]取出3個
那麼可能性就有10種 C(5,3)= C(5,2) 不懂的惡補高二數學排列?
不用翻書了 給個公式
全排列 P(n,m)=n!/(n-m)!
組合排列 C(5,2)=5!/2!*3!=5*4*3*2*1/[(2*1)*(3*2*1)]=10
這是使用了迴圈加遞迴做出了組合排序
*/
getCombination: function(arr, num) {
var r=[];
(function f(t,a,n)
{
if (n==0)
{
return r.push(t);
}
for (var i=0,l=a.length; i<=l-n; i++)
{
f(t.concat(a[i]), a.slice(i+1), n-1);
}
})([],arr,num);
return r;
},
# take array index to a array
# 獲取陣列的索引
getArrayIndex: function(array) {
var i = 0,
r = [];
for(i = 0;i<array.length;i++){
r.push(i);
}
return r;
}
},logic = {
# sort the array,then get what's we need
# 獲取陣列中比sum小的數
init: function(array,sum) {
# clone array
var _array = array.concat(),
r = [],
i = 0;
# sort by asc
_array.sort(function(a,b){
return a - b;
});
# get all number when it's less than or equal sum
for(i = 0;i<_array.length;i++){
if(_array[i]<=sum){
r.push(_array[i]);
}else{
break;
}
}
return r;
},
# important function
core: function(array,sum,arrayIndex,count,r){
var i = 0,
k = 0,
combArray = [],
_sum = 0,
_cca = [],
_cache = [];
if(count == _returnMark){
return;
}
# get current count combination
# 這裡排序的不是原來的陣列,而是求的索引後的陣列
combArray = util.getCombination(arrayIndex,count);
for(i = 0;i<combArray.length;i++){
_cca = combArray[i];
_sum = 0;
_cache = [];
# calculate the sum from combination
for(k = 0;k<_cca.length;k++){
_sum += array[_cca[k]];
_cache.push(array[_cca[k]]);
}
if(Math.abs(_sum-sum) <= _tolerance){
r.push(_cache);
}
}
logic.core(array,sum,arrayIndex,count-1,r);
}
},
r = [],
_array = [],
_targetCount = 0,
_tolerance = 0,
_returnMark = 0;
# check data
_targetCount = targetCount || _targetCount;
_tolerance = tolerance || _tolerance;
_array = logic.init(array,sum);
if(_targetCount){
_returnMark = _targetCount-1;
}
logic.core(_array,sum,util.getArrayIndex(_array),(_targetCount || _array.length),r);
return r;
}
複製程式碼