Spark 簡單例項(基本操作)
Happy王子樂發表於2018-04-19
目錄[-]
1、準備檔案
1
wget http:
//statweb.stanford.edu/~tibs/ElemStatLearn/datasets/spam.data
2、載入檔案
1
scala> val inFile = sc.textFile(
"/home/scipio/spam.data"
)
輸出
1
2
3
14
/
06
/
28
12
:
15
:
34
INFO MemoryStore: ensureFreeSpace(
32880
) called with curMem=
65736
, maxMem=
311387750
14
/
06
/
28
12
:
15
:
34
INFO MemoryStore: Block broadcast_2 stored as values to memory (estimated size
32.1
KB, free
296.9
MB)
inFile: org.apache.spark.rdd.RDD[String] = MappedRDD[
7
] at textFile at <console>:
12
3、顯示一行
1
scala> inFile.first()
輸出
1
2
3
4
5
6
7
8
9
10
14
/
06
/
28
12
:
15
:
39
INFO FileInputFormat: Total input paths to process :
1
14
/
06
/
28
12
:
15
:
39
INFO SparkContext: Starting job: first at <console>:
15
14
/
06
/
28
12
:
15
:
39
INFO DAGScheduler: Got job
0
(first at <console>:
15
) with
1
output partitions (allowLocal=
true
)
14
/
06
/
28
12
:
15
:
39
INFO DAGScheduler: Final stage: Stage
0
(first at <console>:
15
)
14
/
06
/
28
12
:
15
:
39
INFO DAGScheduler: Parents of
final
stage: List()
14
/
06
/
28
12
:
15
:
39
INFO DAGScheduler: Missing parents: List()
14
/
06
/
28
12
:
15
:
39
INFO DAGScheduler: Computing the requested partition locally
14
/
06
/
28
12
:
15
:
39
INFO HadoopRDD: Input split: file:/home/scipio/spam.data:
0
+
349170
14
/
06
/
28
12
:
15
:
39
INFO SparkContext: Job finished: first at <console>:
15
, took
0.532360118
s
res2: String =
0
0.64
0.64
0
0.32
0
0
0
0
0
0
0.64
0
0
0
0.32
0
1.29
1.93
0
0.96
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.778
0
0
3.756
61
278
1
該命令表明:Spark載入檔案是按行載入,每行為一個字串,這樣一個RDD[String]字串陣列就可以將整個檔案存到記憶體中。
4、函式運用
(1)map
1
2
3
4
5
6
7
8
9
10
11
12
13
scala> val nums = inFile.map(x=>x.split(
' '
).map(_.toDouble))
nums: org.apache.spark.rdd.RDD[Array[Double]] = MappedRDD[
8
] at map at <console>:
14
scala> nums.first()
14
/
06
/
28
12
:
19
:
07
INFO SparkContext: Starting job: first at <console>:
17
14
/
06
/
28
12
:
19
:
07
INFO DAGScheduler: Got job
1
(first at <console>:
17
) with
1
output partitions (allowLocal=
true
)
14
/
06
/
28
12
:
19
:
07
INFO DAGScheduler: Final stage: Stage
1
(first at <console>:
17
)
14
/
06
/
28
12
:
19
:
07
INFO DAGScheduler: Parents of
final
stage: List()
14
/
06
/
28
12
:
19
:
07
INFO DAGScheduler: Missing parents: List()
14
/
06
/
28
12
:
19
:
07
INFO DAGScheduler: Computing the requested partition locally
14
/
06
/
28
12
:
19
:
07
INFO HadoopRDD: Input split: file:/home/scipio/spam.data:
0
+
349170
14
/
06
/
28
12
:
19
:
07
INFO SparkContext: Job finished: first at <console>:
17
, took
0.011412903
s
res3: Array[Double] = Array(
0.0
,
0.64
,
0.64
,
0.0
,
0.32
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.64
,
0.0
,
0.0
,
0.0
,
0.32
,
0.0
,
1.29
,
1.93
,
0.0
,
0.96
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.778
,
0.0
,
0.0
,
3.756
,
61.0
,
278.0
,
1.0
)
這裡的命令列:將每行的字串轉換為相應的一個double陣列,這樣全部的資料將可以用一個二維的陣列 RDD[Array[Double]]來表示了
(2)collecct
1
2
3
4
5
6
7
8
9
scala> val rdd = sc.parallelize(List(
1
,
2
,
3
,
4
,
5
))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[
9
] at parallelize at <console>:
12
scala> val mapRdd = rdd.map(
2
*_)
mapRdd: org.apache.spark.rdd.RDD[Int] = MappedRDD[
10
] at map at <console>:
14
scala> mapRdd.collect
14
/
06
/
28
12
:
24
:
45
INFO SparkContext: Job finished: collect at <console>:
17
, took
1.789249751
s
res4: Array[Int] = Array(
2
,
4
,
6
,
8
,
10
)
(3)filter
1
2
3
4
5
6
scala> val filterRdd = sc.parallelize(List(
1
,
2
,
3
,
4
,
5
)).map(_*
2
).filter(_>
5
)
filterRdd: org.apache.spark.rdd.RDD[Int] = FilteredRDD[
13
] at filter at <console>:
12
scala> filterRdd.collect
14
/
06
/
28
12
:
27
:
45
INFO SparkContext: Job finished: collect at <console>:
15
, took
0.056086178
s
res5: Array[Int] = Array(
6
,
8
,
10
)
(4)flatMap
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
scala> val rdd = sc.textFile(
"/home/scipio/README.md"
)
14
/
06
/
28
12
:
31
:
55
INFO MemoryStore: ensureFreeSpace(
32880
) called with curMem=
98616
, maxMem=
311387750
14
/
06
/
28
12
:
31
:
55
INFO MemoryStore: Block broadcast_3 stored as values to memory (estimated size
32.1
KB, free
296.8
MB)
rdd: org.apache.spark.rdd.RDD[String] = MappedRDD[
15
] at textFile at <console>:
12
scala> rdd.count
14
/
06
/
28
12
:
32
:
50
INFO SparkContext: Job finished: count at <console>:
15
, took
0.341167662
s
res6: Long =
127
scala> rdd.cache
res7: rdd.type = MappedRDD[
15
] at textFile at <console>:
12
scala> rdd.count
14
/
06
/
28
12
:
33
:
00
INFO SparkContext: Job finished: count at <console>:
15
, took
0.32015745
s
res8: Long =
127
scala> val wordCount = rdd.flatMap(_.split(
' '
)).map(x=>(x,
1
)).reduceByKey(_+_)
wordCount: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[
20
] at reduceByKey at <console>:
14
scala> wordCount.collect
res9: Array[(String, Int)] = Array((means,
1
), (under,
2
), (
this
,
4
), (Because,
1
), (Python,
2
), (agree,
1
), (cluster.,
1
), (its,
1
), (YARN,,
3
), (have,
2
), (pre-built,
1
), (MRv1,,
1
), (locally.,
1
), (locally,
2
), (changed,
1
), (several,
1
), (only,
1
), (sc.parallelize(
1
,
1
), (This,
2
), (basic,
1
), (first,
1
), (requests,
1
), (documentation,
1
), (Configuration,
1
), (MapReduce,
2
), (without,
1
), (setting,
1
), (
"yarn-client"
,
1
), ([params]`.,
1
), (any,
2
), (application,
1
), (prefer,
1
), (SparkPi,
2
), (<http:
//spark.apache.org/>,1), (version,3), (file,1), (documentation,,1), (test,1), (MASTER,1), (entry,1), (example,3), (are,2), (systems.,1), (params,1), (scala>,1), (<artifactId>hadoop-client</artifactId>,1), (refer,1), (configure,1), (Interactive,2), (artifact,1), (can,7), (file's,1), (build,3), (when,2), (2.0.X,,1), (Apac...
scala> wordCount.saveAsTextFile(
"/home/scipio/wordCountResult.txt"
)
(5)union
1
2
3
4
5
6
7
8
9
10
11
12
scala> val rdd = sc.parallelize(List((
'a'
,
1
),(
'a'
,
2
)))
rdd: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[
10
] at parallelize at <console>:
12
scala> val rdd2 = sc.parallelize(List((
'b'
,
1
),(
'b'
,
2
)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[
11
] at parallelize at <console>:
12
scala> rdd union rdd2
res3: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[
12
] at union at <console>:
17
scala> res3.collect
res4: Array[(Char, Int)] = Array((a,
1
), (a,
2
), (b,
1
), (b,
2
))
(6) join
1
2
3
4
5
6
7
8
9
10
11
12
scala> val rdd1 = sc.parallelize(List((
'a'
,
1
),(
'a'
,
2
),(
'b'
,
3
),(
'b'
,
4
)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[
10
] at parallelize at <console>:
12
scala> val rdd2 = sc.parallelize(List((
'a'
,
5
),(
'a'
,
6
),(
'b'
,
7
),(
'b'
,
8
)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[
11
] at parallelize at <console>:
12
scala> rdd1 join rdd2
res1: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = FlatMappedValuesRDD[
14
] at join at <console>:
17
res1.collect
res2: Array[(Char, (Int, Int))] = Array((b,(
3
,
7
)), (b,(
3
,
8
)), (b,(
4
,
7
)), (b,(
4
,
8
)), (a,(
1
,
5
)), (a,(
1
,
6
)), (a,(
2
,
5
)), (a,(
2
,
6
)))
(7)lookup
1
2
3
val rdd1 = sc.parallelize(List((
'a'
,
1
),(
'a'
,
2
),(
'b'
,
3
),(
'b'
,
4
)))
rdd1.lookup(
'a'
)
res3: Seq[Int] = WrappedArray(
1
,
2
)
(8)groupByKey
1
2
3
4
5
val wc = sc.textFile(
"/home/scipio/README.md"
).flatMap(_.split(
' '
)).map((_,
1
)).groupByKey
wc.collect
14
/
06
/
28
12
:
56
:
14
INFO SparkContext: Job finished: collect at <console>:
15
, took
2.933392093
s
res0: Array[(String, Iterable[Int])] = Array((means,ArrayBuffer(
1
)), (under,ArrayBuffer(
1
,
1
)), (
this
,ArrayBuffer(
1
,
1
,
1
,
1
)), (Because,ArrayBuffer(
1
)), (Python,ArrayBuffer(
1
,
1
)), (agree,ArrayBuffer(
1
)), (cluster.,ArrayBuffer(
1
)), (its,ArrayBuffer(
1
)), (YARN,,ArrayBuffer(
1
,
1
,
1
)), (have,ArrayBuffer(
1
,
1
)), (pre-built,ArrayBuffer(
1
)), (MRv1,,ArrayBuffer(
1
)), (locally.,ArrayBuffer(
1
)), (locally,ArrayBuffer(
1
,
1
)), (changed,ArrayBuffer(
1
)), (sc.parallelize(
1
,ArrayBuffer(
1
)), (only,ArrayBuffer(
1
)), (several,ArrayBuffer(
1
)), (This,ArrayBuffer(
1
,
1
)), (basic,ArrayBuffer(
1
)), (first,ArrayBuffer(
1
)), (documentation,ArrayBuffer(
1
)), (Configuration,ArrayBuffer(
1
)), (MapReduce,ArrayBuffer(
1
,
1
)), (requests,ArrayBuffer(
1
)), (without,ArrayBuffer(
1
)), (
"yarn-client"
,ArrayBuffer(
1
)), ([params]`.,Ar...
(9)sortByKey
1
2
3
4
val rdd = sc.textFile(
"/home/scipio/README.md"
)
val wordcount = rdd.flatMap(_.split(
' '
)).map((_,
1
)).reduceByKey(_+_)
val wcsort = wordcount.map(x => (x._2,x._1)).sortByKey(
false
).map(x => (x._2,x._1))
wcsort.saveAsTextFile(
"/home/scipio/sort.txt"
)
升序的話,sortByKey(true)
目錄[-]
1、準備檔案
1
|
wget http: //statweb.stanford.edu/~tibs/ElemStatLearn/datasets/spam.data |
2、載入檔案
1
|
scala> val inFile = sc.textFile( "/home/scipio/spam.data" ) |
輸出
1
2
3
|
14 / 06 / 28 12 : 15 : 34 INFO MemoryStore: ensureFreeSpace( 32880 ) called with curMem= 65736 , maxMem= 311387750 14 / 06 / 28 12 : 15 : 34 INFO MemoryStore: Block broadcast_2 stored as values to memory (estimated size 32.1 KB, free 296.9 MB) inFile: org.apache.spark.rdd.RDD[String] = MappedRDD[ 7 ] at textFile at <console>: 12 |
3、顯示一行
1
|
scala> inFile.first() |
輸出
1
2
3
4
5
6
7
8
9
10
|
14 / 06 / 28 12 : 15 : 39 INFO FileInputFormat: Total input paths to process : 1 14 / 06 / 28 12 : 15 : 39 INFO SparkContext: Starting job: first at <console>: 15 14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Got job 0 (first at <console>: 15 ) with 1 output partitions (allowLocal= true ) 14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Final stage: Stage 0 (first at <console>: 15 ) 14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Parents of final stage: List() 14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Missing parents: List() 14 / 06 / 28 12 : 15 : 39 INFO DAGScheduler: Computing the requested partition locally 14 / 06 / 28 12 : 15 : 39 INFO HadoopRDD: Input split: file:/home/scipio/spam.data: 0 + 349170 14 / 06 / 28 12 : 15 : 39 INFO SparkContext: Job finished: first at <console>: 15 , took 0.532360118 s res2: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29 1.93 0 0.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.778 0 0 3.756 61 278 1 |
該命令表明:Spark載入檔案是按行載入,每行為一個字串,這樣一個RDD[String]字串陣列就可以將整個檔案存到記憶體中。
4、函式運用
(1)map
1
2
3
4
5
6
7
8
9
10
11
12
13
|
scala> val nums = inFile.map(x=>x.split( ' ' ).map(_.toDouble)) nums: org.apache.spark.rdd.RDD[Array[Double]] = MappedRDD[ 8 ] at map at <console>: 14 scala> nums.first() 14 / 06 / 28 12 : 19 : 07 INFO SparkContext: Starting job: first at <console>: 17 14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Got job 1 (first at <console>: 17 ) with 1 output partitions (allowLocal= true ) 14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Final stage: Stage 1 (first at <console>: 17 ) 14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Parents of final stage: List() 14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Missing parents: List() 14 / 06 / 28 12 : 19 : 07 INFO DAGScheduler: Computing the requested partition locally 14 / 06 / 28 12 : 19 : 07 INFO HadoopRDD: Input split: file:/home/scipio/spam.data: 0 + 349170 14 / 06 / 28 12 : 19 : 07 INFO SparkContext: Job finished: first at <console>: 17 , took 0.011412903 s res3: Array[Double] = Array( 0.0 , 0.64 , 0.64 , 0.0 , 0.32 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.64 , 0.0 , 0.0 , 0.0 , 0.32 , 0.0 , 1.29 , 1.93 , 0.0 , 0.96 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.778 , 0.0 , 0.0 , 3.756 , 61.0 , 278.0 , 1.0 ) |
這裡的命令列:將每行的字串轉換為相應的一個double陣列,這樣全部的資料將可以用一個二維的陣列 RDD[Array[Double]]來表示了
(2)collecct
1
2
3
4
5
6
7
8
9
|
scala> val rdd = sc.parallelize(List( 1 , 2 , 3 , 4 , 5 )) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[ 9 ] at parallelize at <console>: 12 scala> val mapRdd = rdd.map( 2 *_) mapRdd: org.apache.spark.rdd.RDD[Int] = MappedRDD[ 10 ] at map at <console>: 14 scala> mapRdd.collect 14 / 06 / 28 12 : 24 : 45 INFO SparkContext: Job finished: collect at <console>: 17 , took 1.789249751 s res4: Array[Int] = Array( 2 , 4 , 6 , 8 , 10 ) |
(3)filter
1
2
3
4
5
6
|
scala> val filterRdd = sc.parallelize(List( 1 , 2 , 3 , 4 , 5 )).map(_* 2 ).filter(_> 5 ) filterRdd: org.apache.spark.rdd.RDD[Int] = FilteredRDD[ 13 ] at filter at <console>: 12 scala> filterRdd.collect 14 / 06 / 28 12 : 27 : 45 INFO SparkContext: Job finished: collect at <console>: 15 , took 0.056086178 s res5: Array[Int] = Array( 6 , 8 , 10 ) |
(4)flatMap
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
scala> val rdd = sc.textFile( "/home/scipio/README.md" ) 14 / 06 / 28 12 : 31 : 55 INFO MemoryStore: ensureFreeSpace( 32880 ) called with curMem= 98616 , maxMem= 311387750 14 / 06 / 28 12 : 31 : 55 INFO MemoryStore: Block broadcast_3 stored as values to memory (estimated size 32.1 KB, free 296.8 MB) rdd: org.apache.spark.rdd.RDD[String] = MappedRDD[ 15 ] at textFile at <console>: 12 scala> rdd.count 14 / 06 / 28 12 : 32 : 50 INFO SparkContext: Job finished: count at <console>: 15 , took 0.341167662 s res6: Long = 127 scala> rdd.cache res7: rdd.type = MappedRDD[ 15 ] at textFile at <console>: 12 scala> rdd.count 14 / 06 / 28 12 : 33 : 00 INFO SparkContext: Job finished: count at <console>: 15 , took 0.32015745 s res8: Long = 127 scala> val wordCount = rdd.flatMap(_.split( ' ' )).map(x=>(x, 1 )).reduceByKey(_+_) wordCount: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[ 20 ] at reduceByKey at <console>: 14 scala> wordCount.collect res9: Array[(String, Int)] = Array((means, 1 ), (under, 2 ), ( this , 4 ), (Because, 1 ), (Python, 2 ), (agree, 1 ), (cluster., 1 ), (its, 1 ), (YARN,, 3 ), (have, 2 ), (pre-built, 1 ), (MRv1,, 1 ), (locally., 1 ), (locally, 2 ), (changed, 1 ), (several, 1 ), (only, 1 ), (sc.parallelize( 1 , 1 ), (This, 2 ), (basic, 1 ), (first, 1 ), (requests, 1 ), (documentation, 1 ), (Configuration, 1 ), (MapReduce, 2 ), (without, 1 ), (setting, 1 ), ( "yarn-client" , 1 ), ([params]`., 1 ), (any, 2 ), (application, 1 ), (prefer, 1 ), (SparkPi, 2 ), (<http: //spark.apache.org/>,1), (version,3), (file,1), (documentation,,1), (test,1), (MASTER,1), (entry,1), (example,3), (are,2), (systems.,1), (params,1), (scala>,1), (<artifactId>hadoop-client</artifactId>,1), (refer,1), (configure,1), (Interactive,2), (artifact,1), (can,7), (file's,1), (build,3), (when,2), (2.0.X,,1), (Apac... scala> wordCount.saveAsTextFile( "/home/scipio/wordCountResult.txt" ) |
(5)union
1
2
3
4
5
6
7
8
9
10
11
12
|
scala> val rdd = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 ))) rdd: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 10 ] at parallelize at <console>: 12 scala> val rdd2 = sc.parallelize(List(( 'b' , 1 ),( 'b' , 2 ))) rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 11 ] at parallelize at <console>: 12 scala> rdd union rdd2 res3: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[ 12 ] at union at <console>: 17 scala> res3.collect res4: Array[(Char, Int)] = Array((a, 1 ), (a, 2 ), (b, 1 ), (b, 2 )) |
(6) join
1
2
3
4
5
6
7
8
9
10
11
12
|
scala> val rdd1 = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 ),( 'b' , 3 ),( 'b' , 4 ))) rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 10 ] at parallelize at <console>: 12 scala> val rdd2 = sc.parallelize(List(( 'a' , 5 ),( 'a' , 6 ),( 'b' , 7 ),( 'b' , 8 ))) rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[ 11 ] at parallelize at <console>: 12 scala> rdd1 join rdd2 res1: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = FlatMappedValuesRDD[ 14 ] at join at <console>: 17 res1.collect res2: Array[(Char, (Int, Int))] = Array((b,( 3 , 7 )), (b,( 3 , 8 )), (b,( 4 , 7 )), (b,( 4 , 8 )), (a,( 1 , 5 )), (a,( 1 , 6 )), (a,( 2 , 5 )), (a,( 2 , 6 ))) |
(7)lookup
1
2
3
|
val rdd1 = sc.parallelize(List(( 'a' , 1 ),( 'a' , 2 ),( 'b' , 3 ),( 'b' , 4 ))) rdd1.lookup( 'a' ) res3: Seq[Int] = WrappedArray( 1 , 2 ) |
(8)groupByKey
1
2
3
4
5
|
val wc = sc.textFile( "/home/scipio/README.md" ).flatMap(_.split( ' ' )).map((_, 1 )).groupByKey wc.collect 14 / 06 / 28 12 : 56 : 14 INFO SparkContext: Job finished: collect at <console>: 15 , took 2.933392093 s res0: Array[(String, Iterable[Int])] = Array((means,ArrayBuffer( 1 )), (under,ArrayBuffer( 1 , 1 )), ( this ,ArrayBuffer( 1 , 1 , 1 , 1 )), (Because,ArrayBuffer( 1 )), (Python,ArrayBuffer( 1 , 1 )), (agree,ArrayBuffer( 1 )), (cluster.,ArrayBuffer( 1 )), (its,ArrayBuffer( 1 )), (YARN,,ArrayBuffer( 1 , 1 , 1 )), (have,ArrayBuffer( 1 , 1 )), (pre-built,ArrayBuffer( 1 )), (MRv1,,ArrayBuffer( 1 )), (locally.,ArrayBuffer( 1 )), (locally,ArrayBuffer( 1 , 1 )), (changed,ArrayBuffer( 1 )), (sc.parallelize( 1 ,ArrayBuffer( 1 )), (only,ArrayBuffer( 1 )), (several,ArrayBuffer( 1 )), (This,ArrayBuffer( 1 , 1 )), (basic,ArrayBuffer( 1 )), (first,ArrayBuffer( 1 )), (documentation,ArrayBuffer( 1 )), (Configuration,ArrayBuffer( 1 )), (MapReduce,ArrayBuffer( 1 , 1 )), (requests,ArrayBuffer( 1 )), (without,ArrayBuffer( 1 )), ( "yarn-client" ,ArrayBuffer( 1 )), ([params]`.,Ar... |
(9)sortByKey
1
2
3
4
|
val rdd = sc.textFile( "/home/scipio/README.md" ) val wordcount = rdd.flatMap(_.split( ' ' )).map((_, 1 )).reduceByKey(_+_) val wcsort = wordcount.map(x => (x._2,x._1)).sortByKey( false ).map(x => (x._2,x._1)) wcsort.saveAsTextFile( "/home/scipio/sort.txt" ) |
升序的話,sortByKey(true)
相關文章
- ElasticSearch客戶端簡單操作例項2021-09-08Elasticsearch客戶端
- websocket簡單例項2017-07-19Web單例
- MySQL基本簡單操作012018-07-15MySql
- mysql的簡單基本操作2017-09-22MySql
- Spark 系列(十四)—— Spark Streaming 基本操作2019-08-14Spark
- opengl簡單入門例項2020-05-14
- javascript事件冒泡簡單例項2017-03-08JavaScript事件單例
- javascript this用法和簡單例項2017-02-11JavaScript單例
- js選項卡簡單程式碼例項2017-04-16JS
- EventBus詳解及簡單例項2021-09-09單例
- $.ajax()函式用法簡單例項2017-03-15函式單例
- c++類的簡單例項2016-12-09C++單例
- 策略模式與簡單java例項2010-11-25模式Java
- corba程式設計簡單例項2009-11-29ORB程式設計單例
- jQuery實現的簡單投票簡單程式碼例項2017-03-03jQuery
- jQuery表單驗證簡單程式碼例項2017-02-28jQuery
- Spark Streaming之dataset例項2017-07-31Spark
- Java的Socket通訊簡單例項2021-10-27Java單例
- jQuery實現的動畫簡單例項2017-03-07jQuery動畫單例
- js map集合簡單程式碼例項2017-04-04JS
- javascript閉包簡單程式碼例項2017-03-23JavaScript
- javascript作用域簡單例項程式碼2017-03-19JavaScript單例
- mysql 儲存過程簡單例項2017-08-15MySql儲存過程單例
- spring4簡單例項(1)2017-01-03Spring單例
- JSON簡單格式程式碼例項2017-02-02JSON
- JavaScript 動畫效果簡單例項程式碼2017-02-20JavaScript動畫單例
- mysql儲存過程簡單例項2015-05-29MySql儲存過程單例
- Spark Stream 簡單例子2017-03-31Spark單例
- css簡單水平導航選單程式碼例項2017-04-06CSS
- Angularjs製作簡單的路由功能簡單程式碼例項2017-04-05AngularJS路由
- jQuery操作select下拉選單程式碼例項2017-04-15jQuery
- Spark效能調優——9項基本原則2021-11-17Spark
- Spark Job-Stage-Task例項理解2020-09-21Spark
- 超級簡單入門vuex 小例項2018-12-07Vue
- XML節點自動生成簡單例項2020-10-10XML單例
- jQuery鏈式呼叫簡單例項程式碼2017-03-07jQuery單例
- jQuery構造物件例項簡單介紹2017-03-17jQuery物件
- prototype原型繼承簡單程式碼例項2017-04-08原型繼承