【python資料探勘課程】十二.Pandas、Matplotlib結合SQL語句對比圖分析

Eastmount發表於2017-03-20

        這篇文章主要講述Python常用資料分析包Numpy、Pandas、Matplotlib結合MySQL分析資料,前一篇文章 "【python資料探勘課程】十一.Pandas、Matplotlib結合SQL語句視覺化分析" 講述了MySQL繪圖分析的好處,這篇文字進一步加深難度,對資料集進行了對比分析。
        資料分析結合SQL語句的效果真的很好,很多大神看到可能會笑話晚輩,但是如果你是資料分析的新人,那我強烈推薦,尤其是結合網路爬蟲進行資料分析的。希望這篇文章對你有所幫助,如果文章中存在錯誤或不足之處,還請高抬貴手~

        前文推薦:
       【Python資料探勘課程】一.安裝Python及爬蟲入門介紹
       【Python資料探勘課程】二.Kmeans聚類資料分析及Anaconda介紹
       【Python資料探勘課程】三.Kmeans聚類程式碼實現、作業及優化
       【Python資料探勘課程】四.決策樹DTC資料分析及鳶尾資料集分析
       【Python資料探勘課程】五.線性迴歸知識及預測糖尿病例項
       【Python資料探勘課程】六.Numpy、Pandas和Matplotlib包基礎知識
       【Python資料探勘課程】七.PCA降維操作及subplot子圖繪製
       【Python資料探勘課程】八.關聯規則挖掘及Apriori實現購物推薦
       【Python資料探勘課程】九.迴歸模型LinearRegression簡單分析氧化物資料
       【python資料探勘課程】十.Pandas、Matplotlib、PCA繪圖實用程式碼補充
       【python資料探勘課程】十一.Pandas、Matplotlib結合SQL語句視覺化分析



一. 直方圖四圖對比

        資料庫如下所示,包括URL、作者、標題、摘要、日期、閱讀量和評論數等。


            
        執行結果如下所示,其中繪製多個圖的核心程式碼為:
        p1 = plt.subplot(221)
        plt.bar(ind, num1, width, color='b', label='sum num')   
        plt.sca(p1)


        完整程式碼如下:

# coding=utf-8
'''
' 這篇程式碼主要講述獲取MySQL中資料,再進行簡單的統計
' 統計採用SQL語句進行
'''

import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
import pylab
import MySQLdb
from pylab import *

# 根據SQL語句輸出24小時的柱狀圖
try:
    conn = MySQLdb.connect(host='localhost',user='root',
                         passwd='123456',port=3306, db='test01')
    cur = conn.cursor() #資料庫遊標

    #防止報錯:UnicodeEncodeError: 'latin-1' codec can't encode character
    conn.set_character_set('utf8')
    cur.execute('SET NAMES utf8;')
    cur.execute('SET CHARACTER SET utf8;')
    cur.execute('SET character_set_connection=utf8;')
    

    #################################################
    # 2014年
    #################################################
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
            where DATE_FORMAT(FBTime,'%Y')='2014' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall() #獲取結果複製給result
    hour1 = [n[0] for n in result]
    print hour1
    num1 = [n[1] for n in result]
    print num1

    N =  12
    ind = np.arange(N)  #賦值0-11  
    width=0.35
    p1 = plt.subplot(221)
    plt.bar(ind, num1, width, color='b', label='sum num')   
    #設定底部名稱    
    plt.xticks(ind+width/2, hour1, rotation=40) #旋轉40度
    for i in range(12):   #中心底部翻轉90度
        plt.text(i, num1[i], str(num1[i]),
                 ha='center', va='bottom', rotation=45) 
    plt.title('2014 Number-12Month')    
    plt.sca(p1)


    #################################################
    # 2015年
    #################################################
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
            where DATE_FORMAT(FBTime,'%Y')='2015' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()        
    hour1 = [n[0] for n in result]
    print hour1
    num1 = [n[1] for n in result]
    print num1
    
    N =  12
    ind = np.arange(N)  #賦值0-11  
    width=0.35
    p2 = plt.subplot(222)
    plt.bar(ind, num1, width, color='r', label='sum num')   
    #設定底部名稱    
    plt.xticks(ind+width/2, hour1, rotation=40) #旋轉40度
    for i in range(12):   #中心底部翻轉90度
        plt.text(i, num1[i], str(num1[i]),
                 ha='center', va='bottom', rotation=45) 
    plt.title('2015 Number-12Month')    
    plt.sca(p2)


    #################################################
    # 2016年
    #################################################
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
            where DATE_FORMAT(FBTime,'%Y')='2016' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()        
    hour1 = [n[0] for n in result]
    print hour1
    num1 = [n[1] for n in result]
    print num1

    N =  12
    ind = np.arange(N)  #賦值0-11 
    width=0.35
    p3 = plt.subplot(223)
    plt.bar(ind, num1, width, color='g', label='sum num')   
    #設定底部名稱    
    plt.xticks(ind+width/2, hour1, rotation=40) #旋轉40度
    for i in range(12):   #中心底部翻轉90度
        plt.text(i, num1[i], str(num1[i]),
                 ha='center', va='bottom', rotation=45) 
    plt.title('2016 Number-12Month')    
    plt.sca(p3)

    
    #################################################
    # 所有年份資料對比
    #################################################
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()     
    hour1 = [n[0] for n in result]
    print hour1
    num1 = [n[1] for n in result]
    print num1

    N =  12
    ind = np.arange(N)  #賦值0-11  
    width=0.35
    p4 = plt.subplot(224)
    plt.bar(ind, num1, width, color='y', label='sum num')   
    #設定底部名稱    
    plt.xticks(ind+width/2, hour1, rotation=40) #旋轉40度
    for i in range(12):   #中心底部翻轉90度
        plt.text(i, num1[i], str(num1[i]),
                 ha='center', va='bottom', rotation=45) 
    plt.title('All Year Number-12Month')    
    plt.sca(p4)

    plt.savefig('ttt.png',dpi=400)    
    plt.show()

#異常處理
except MySQLdb.Error,e:
    print "Mysql Error %d: %s" % (e.args[0], e.args[1])
finally:
    cur.close()
    conn.commit()  
    conn.close()





二. Area Plot圖對比

        執行效果如下所示,核心程式碼如下:
        data = np.array([num1, num2, num3, num4])
        d = data.T #轉置 12*4
        df = DataFrame(d, index=hour1, columns=['All','2014', '2015', '2016'])
        df.plot(kind='area', alpha=0.2) #設定顏色 透明度
        plt.savefig('csdn.png',dpi=400) 
        plt.show()

        其中需要將num1~num4合併為[12,4]陣列,同時轉換為array,再轉置繪圖。index是設定X軸時間,columns是設定每行資料對應的值。kind='area'設定Area Plot圖,還有 'bar'(柱狀圖)、'barh'(柱狀圖-縱向)、'scatter'(散點圖)、'pie'(餅圖)。


        該圖會將資料劃分為等級梯度,基本趨勢相同。
        完整程式碼如下所示:

# coding=utf-8
'''
' 這篇程式碼主要講述獲取MySQL中資料,再進行簡單的統計
' 統計採用SQL語句進行 By:Eastmount CSDN
'''

import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
import MySQLdb
from pandas import *

try:
    conn = MySQLdb.connect(host='localhost',user='root',
                         passwd='123456',port=3306, db='test01')
    cur = conn.cursor() #資料庫遊標

    #防止報錯:UnicodeEncodeError: 'latin-1' codec can't encode character
    conn.set_character_set('utf8')
    cur.execute('SET NAMES utf8;')
    cur.execute('SET CHARACTER SET utf8;')
    cur.execute('SET character_set_connection=utf8;')

    #所有部落格數
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
             group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()        #獲取結果複製給result
    hour1 = [n[0] for n in result]
    print hour1
    num1 = [n[1] for n in result]
    print num1

    #2014年部落格數
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
             where DATE_FORMAT(FBTime,'%Y')='2014' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()        
    num2 = [n[1] for n in result]
    print num2

    #2015年部落格數
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
             where DATE_FORMAT(FBTime,'%Y')='2015' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()       
    num3 = [n[1] for n in result]
    print num3

    #2016年部落格數
    sql = '''select MONTH(FBTime) as mm, count(*) as cnt from csdn_blog
             where DATE_FORMAT(FBTime,'%Y')='2016' group by mm;'''
    cur.execute(sql)
    result = cur.fetchall()       
    num4 = [n[1] for n in result]
    print num4

    #重點: 資料整合 [12,4]
    data = np.array([num1, num2, num3, num4])
    print data
    d = data.T #轉置
    print d
    df = DataFrame(d, index=hour1, columns=['All','2014', '2015', '2016'])
    df.plot(kind='area', alpha=0.2) #設定顏色 透明度
    plt.title('Arae Plot Blog-Month') 
    plt.savefig('csdn.png',dpi=400) 
    plt.show()

#異常處理
except MySQLdb.Error,e:
    print "Mysql Error %d: %s" % (e.args[0], e.args[1])
finally:
    cur.close()
    conn.commit()  
    conn.close()
    



三. MySQL語句獲取星期資訊

        MySQL通過日期獲取星期的語句如下:

select  now(), case dayofweek(now())  
	when 1 then '星期日' 
	when 2 then '星期一' 
	when 3 then '星期二' 
	when 4 then '星期三' 
	when 5 then '星期四' 
	when 6 then '星期五' 
	when 7 then '星期六' end as 'week'  
from dual;
         輸出如下圖所示:
         Python對應的程式碼如下,獲取總的部落格星期分佈:
# coding=utf-8
'''
' 這篇程式碼主要講述獲取MySQL中資料,再進行簡單的統計
' 統計採用SQL語句進行 By:Eastmount CSDN
'''

import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
import MySQLdb
from pandas import *

try:
    conn = MySQLdb.connect(host='localhost',user='root',
                         passwd='123456',port=3306, db='test01')
    cur = conn.cursor() #資料庫遊標

    #防止報錯:UnicodeEncodeError: 'latin-1' codec can't encode character
    conn.set_character_set('utf8')
    cur.execute('SET NAMES utf8;')
    cur.execute('SET CHARACTER SET utf8;')
    cur.execute('SET character_set_connection=utf8;')
    sql = '''select  
            COUNT(case dayofweek(FBTime)  when 1 then 1 end) AS '星期日',
            COUNT(case dayofweek(FBTime)  when 2 then 1 end) AS '星期一',
            COUNT(case dayofweek(FBTime)  when 3 then 1 end) AS '星期二',
            COUNT(case dayofweek(FBTime)  when 4 then 1 end) AS '星期三',
            COUNT(case dayofweek(FBTime)  when 5 then 1 end) AS '星期四',
            COUNT(case dayofweek(FBTime)  when 6 then 1 end) AS '星期五',
            COUNT(case dayofweek(FBTime)  when 7 then 1 end) AS '星期六'
            from csdn_blog;
          '''
    cur.execute(sql)
    result = cur.fetchall()     
    print result
    #((31704L, 43081L, 42670L, 43550L, 41270L, 39164L, 29931L),)
    name = ['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday']
    #轉換為numpy陣列
    data = np.array(result)
    print data
    d = data.T #轉置
    print d

    matplotlib.style.use('ggplot')
    df=DataFrame(d, index=name,columns=['Nums'])
    df.plot(kind='bar')
    plt.title('All Year Blog-Week')    
    plt.xlabel('Week')
    plt.ylabel('The number of blog')
    plt.savefig('01csdn.png',dpi=400)
    plt.show()

#異常處理
except MySQLdb.Error,e:
    print "Mysql Error %d: %s" % (e.args[0], e.args[1])
finally:
    cur.close()
    conn.commit()  
    conn.close()
       
         執行結果如下所示:



四. 星期資料柱狀圖及折線圖對比

        下面獲取四年的資料進行對比,程式碼如下所示:

        核心程式碼如下,注意三個一維陣列轉換為num[7][3]二維陣列的方法。
        data = np.random.rand(7,3)
        print data
        i = 0
        while i<7:
            data[i][0] = d1[i]
            data[i][1] = d2[i]
            data[i][2] = d3[i]
            i = i + 1    
        matplotlib.style.use('ggplot')
        #資料[7,3]陣列 name為星期 columns對應年份
        df=DataFrame(data, index=name, columns=['2008','2011','2016'])
        df.plot(kind='bar')   
        plt.show()


        完整程式碼為:

# coding=utf-8
'''
' 這篇程式碼主要講述獲取MySQL中資料,再進行簡單的統計
' 統計採用SQL語句進行 By:Eastmount CSDN 楊秀璋
'''

import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
import MySQLdb
from pandas import *

try:
    conn = MySQLdb.connect(host='localhost',user='root',
                         passwd='123456',port=3306, db='test01')
    cur = conn.cursor() #資料庫遊標

    #防止報錯:UnicodeEncodeError: 'latin-1' codec can't encode character
    conn.set_character_set('utf8')
    cur.execute('SET NAMES utf8;')
    cur.execute('SET CHARACTER SET utf8;')
    cur.execute('SET character_set_connection=utf8;')
    sql = '''select  
            COUNT(case dayofweek(FBTime)  when 1 then 1 end) AS '星期日',
            COUNT(case dayofweek(FBTime)  when 2 then 1 end) AS '星期一',
            COUNT(case dayofweek(FBTime)  when 3 then 1 end) AS '星期二',
            COUNT(case dayofweek(FBTime)  when 4 then 1 end) AS '星期三',
            COUNT(case dayofweek(FBTime)  when 5 then 1 end) AS '星期四',
            COUNT(case dayofweek(FBTime)  when 6 then 1 end) AS '星期五',
            COUNT(case dayofweek(FBTime)  when 7 then 1 end) AS '星期六'
            from csdn_blog where DATE_FORMAT(FBTime,'%Y')='2008';
          '''
    cur.execute(sql)
    result1 = cur.fetchall()        
    print result1
    name = ['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday']
    data = np.array(result1)
    d1 = data.T #轉置
    print d1


    sql = '''select  
            COUNT(case dayofweek(FBTime)  when 1 then 1 end) AS '星期日',
            COUNT(case dayofweek(FBTime)  when 2 then 1 end) AS '星期一',
            COUNT(case dayofweek(FBTime)  when 3 then 1 end) AS '星期二',
            COUNT(case dayofweek(FBTime)  when 4 then 1 end) AS '星期三',
            COUNT(case dayofweek(FBTime)  when 5 then 1 end) AS '星期四',
            COUNT(case dayofweek(FBTime)  when 6 then 1 end) AS '星期五',
            COUNT(case dayofweek(FBTime)  when 7 then 1 end) AS '星期六'
            from csdn_blog where DATE_FORMAT(FBTime,'%Y')='2011';
          '''
    cur.execute(sql)
    result2 = cur.fetchall()        
    data = np.array(result2)
    d2 = data.T #轉置
    print d2


    sql = '''select  
            COUNT(case dayofweek(FBTime)  when 1 then 1 end) AS '星期日',
            COUNT(case dayofweek(FBTime)  when 2 then 1 end) AS '星期一',
            COUNT(case dayofweek(FBTime)  when 3 then 1 end) AS '星期二',
            COUNT(case dayofweek(FBTime)  when 4 then 1 end) AS '星期三',
            COUNT(case dayofweek(FBTime)  when 5 then 1 end) AS '星期四',
            COUNT(case dayofweek(FBTime)  when 6 then 1 end) AS '星期五',
            COUNT(case dayofweek(FBTime)  when 7 then 1 end) AS '星期六'
            from csdn_blog where DATE_FORMAT(FBTime,'%Y')='2016';
          '''
    cur.execute(sql)
    result3 = cur.fetchall()       
    data = np.array(result3)
    print type(result3),type(data)
    d3 = data.T #轉置
    print d3


    #SQL語句獲取3個陣列,採用迴圈複製到一個[7][3]的二維陣列中
    data = np.random.rand(7,3)
    print data
    i = 0
    while i<7:
        data[i][0] = d1[i]
        data[i][1] = d2[i]
        data[i][2] = d3[i]
        i = i + 1

    print data
    print type(data)

    #繪圖
    matplotlib.style.use('ggplot')
    #資料[7,3]陣列 name為星期 columns對應年份
    df=DataFrame(data, index=name, columns=['2008','2011','2016'])
    df.plot(kind='bar')   
    plt.title('Comparison Chart Blog-Week')    
    plt.xlabel('Week')
    plt.ylabel('The number of blog')
    plt.savefig('03csdn.png', dpi=400)
    plt.show()



#異常處理
except MySQLdb.Error,e:
    print "Mysql Error %d: %s" % (e.args[0], e.args[1])
finally:
    cur.close()
    conn.commit()  
    conn.close()
      
        其中將程式碼 "df.plot(kind='bar')" 修改為  "df.plot()" 即為折線圖。

 

         講到這裡,通過Pandas、Matplotlib、Numpy結合MySQL視覺化分析,並且進階對比圖片函式的分析過程已經講完了,後面會結合SQL資料庫做一些詞雲WordCloud、顏色圖、Power-low圖等分析。

       希望文章對你有所幫助,尤其是結合資料庫做資料分析的人。還是那句話,如果剛好需要這部分知識,你就會覺得非常有幫助,否則只是覺得好玩,這也是線上筆記的作用。如果文章中存在不足或錯誤的地方,還請海涵~

        最近可能有些事情需要發生,我都需要平常心對待,真的好喜歡教學,認真教學生些東西,但是又覺得 "教優則 仕" 也有道理!做自己,為每一個自己的學生付出我所能做的所有。同時,真的心疼綠么,但是有她陪著真的感覺兩個人能克服一切,心安娜美~

        視覺化推薦下面的文章:
        [轉] 使用python繪製簡單的圖表 - 初雪之音 (強推)
        利用Python進行資料分析——繪圖和視覺化(八) (強推)
        用 Seaborn 畫出好看的分佈圖(Python) [強推]
        10分鐘python圖表繪製 | seaborn入門(一):distplot與kdeplot
        python資料視覺化(matplotlib,pandas繪圖,散點圖,柱狀圖,折線圖,箱線圖)
        Python之numpy教程(三):轉置、乘積、通用函式
        


        (By:Eastmount 2017-03-20 晚上7點  
http://blog.csdn.net/eastmount/ )

 


相關文章