第一部分機器學習(一):導論

極簡XksA發表於2018-12-27

什麼是機器學習?

1.機器學習 == 尋找一種函式

這個函式可以是:

1. 語音識別:輸入一段語音訊號,輸出文字
f(

第一部分機器學習(一):導論

)="howareyou"

2. 影像識別:輸入圖片,輸出圖片的屬性
f(

第一部分機器學習(一):導論

)=“cat

3. 智慧控制:輸入棋盤局勢,輸出下一步落棋位置
f(

第一部分機器學習(一):導論

="5∗5"

4. 對話系統: 輸入語言,系統回覆
f("Hi")="Hello"

2.如何尋找這個函式

第一部分機器學習(一):導論

和把大象放冰箱一樣,一共分三步:
   1.定義一個函式集合(define a function set)
   2.判斷函式的好壞(goodness of a function)
   3.選擇最好的函式(pick the best one)

3.學習路線

1. 監督學習(Supervised learning)

2. 半監督學習(Semi-Supervised learning)

3. 遷移學習(Transfer learning)

4. 非監督學習(Unsupervised learning)

5. 結構化學習(Structed learning)

3.1 監督學習

監督學習是在有資料標註的情況下進行學習。
迴歸:(Regression)
迴歸問題,尋找函式f的輸出為一個數值。一般用於預測。
該問題一般是透過大量的訓練資料,找到相對正確的函式。
例如:我們可以從歷史的PM2.5的資料中,找到規律,預測未來的PM2.5

第一部分機器學習(一):導論

分類:(Classification)
分類問題可以分為二分類,和多分類。

第一部分機器學習(一):導論

3.2 半監督學習(Semi-Supervised learning)

半監督學習,是學習的過程中,當訓練資料中帶標記的(labled)資料不夠多
舉個例子:識別貓和狗的過程中:
帶標記的資料:

第一部分機器學習(一):導論

不帶標記的資料:

第一部分機器學習(一):導論

3.3 遷移學習(Transfer learning)

遷移學習是在已經學習的基礎上,去做看似和以前學習不相關的事情,但是實際效果很好。
例如:還是識別貓狗的例子,我們可以在識別貓狗的基礎上識別大象、老虎。(在一定的基礎上進行學習)

第一部分機器學習(一):導論


第一部分機器學習(一):導論

3.3 非監督學習(Unsupervised learning)

非監督學習就是在沒有具體資料標註的情況下進行學習。
例如:

(1)機器閱讀:機器在大量的文件中學會詞語的意思

(2)機器繪畫:機器在看過圖片資訊後,自己繪製圖片

3.4 結構化學習(Structed learning)

結構化學習就是要超越簡單的迴歸和分類,函式產生結構化的結果:比如圖片、語言、聲音。

f(

第一部分機器學習(一):導論

)=(機器學習是未來的鑰匙!)

--------------期待開始--------------

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/31556503/viewspace-2286678/,如需轉載,請註明出處,否則將追究法律責任。

相關文章