OpenCv查詢輪廓-cv2.findContours()函式

ckxllf發表於2021-03-01

  contours, hier = cv2.findContours(img,mode,method)

  引數:

  1. img: 要尋找輪廓的影像

  2. mode:輪廓的檢索模式(四種)

  1.cv2.RETR_EXTERNAL 表示只檢測外輪廓

  2.cv2.RETR_LIST 檢測的輪廓不建立等級關係

  3.cv2.RETR_CCOMP 建立兩個等級的輪廓,上面的一層為外邊界,裡面的一層為內孔的邊界資訊。如果內孔內還有一個連通物體,這個物體的邊界也在頂層

  4.cv2.RETR_TREE 建立一個等級樹結構的輪廓

  3. method:輪廓的近似辦法

  cv2.CHAIN_APPROX_NONE儲存所有的輪廓點,相鄰的兩個點的畫素位置差不超過1,即max(abs(x1-x2),abs(y2-y1))==1。cv2.CHAIN_APPROX_SIMPLE壓縮水平方向,垂直方向,對角線方向的元素,只保留該方向的終點座標,例如一個矩形輪廓只需4個點來儲存輪廓資訊

  返回值:

  contours:一個列表,返回的輪廓

  hier:一個ndarray, 每條輪廓對應的屬性,

  import cv2

  import numpy as np

  img = cv2.pyrDown(cv2.imread("G:/cj/7.jpg", cv2.IMREAD_UNCHANGED))

  print("圖片大小:",img.shape)

  #高斯濾波

  gray_img = cv2.GaussianBlur(img, (5, 5), 0)

  #cv2.threshold (源圖片, 閾值, 填充色, 閾值型別)

  #二值化 返回第一個得到的閾值值,第二個就是閾值化後的影像。

  ret, thresh = cv2.threshold(cv2.cvtColor(gray_img.copy(), cv2.COLOR_BGR2GRAY) , 127, 255, cv2.THRESH_BINARY)

  contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

  for c in contours:

  # find bounding box coordinates獲取輪廓的最小矩形

  x,y,w,h = cv2.boundingRect(c)

  cv2.rectangle(gray_img, (x,y), (x+w, y+h), (0, 255, 0), 1)

  center1=(int(x+w/2),int(y+h/2))

  print("中心座標:",center1)

  cv2.circle(gray_img, center1, 1, (0,255,0), -1, 0)

  # find minimum area

  rect = cv2.minAreaRect(c)

  #繪製過中心的的直線

  cv2.line(gray_img, (int(rect[0][0]),int(rect[0][1])),(int(rect[0][0]),0), (0,255,0),2,4)

  # calculate coordinates of the minimum area rectangle獲取矩形四個點

  box = cv2.boxPoints(rect)

  # normalize coordinates to integers取整

  box = np.int0(box)

  # draw contours

  print("四點座標:",box)

  if box[0][0]<=img.shape[1]/2:

  angle=rect[2]

  cv2.line(gray_img, (int((box[2][0]+box[1][0])/2),int((box[2][1]+box[1][1])/2)),(int(rect[0][0]),int(rect[0][1])), (0,255,0),2,4)

  print("偏轉角度:",angle)

  else:

  angle=90+rect[2]

  cv2.line(gray_img, (int((box[2][0]+box[3][0])/2),int((box[2][1]+box[3][1])/2)),(int(rect[0][0]),int(rect[0][1])), (0,255,0),2,4) 大連做人流多少錢

  print("偏轉角度:",angle)

  cv2.drawContours(gray_img, [box], 0, (0,0, 255), 1)

  # calculate center and radius of minimum enclosing circle

  (x,y),radius = cv2.minEnclosingCircle(c)

  # cast to integers

  center = (int(x),int(y))

  radius = int(radius)

  # draw the circle

  # img = cv2.circle(img,center,radius,(0,255,0),2)

  text='Angle:'+str(round(angle,2))+'\n'+str((box[2][0]+box[0][0])/2)+','+str((box[2][1]+box[0][1])/2)

  y0, dy = 50, 25

  for i, txt in enumerate(text.split('\n')):

  y = y0+2*i*dy

  cv2.putText(gray_img, txt, (50,y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

  cv2.drawContours(gray_img, contours, -1, (255, 0, 0), 1)

  cv2.imshow("contours", gray_img)

  cv2.waitKey()

  cv2.destroyAllWindows()

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69945560/viewspace-2760255/,如需轉載,請註明出處,否則將追究法律責任。

相關文章