基於Python-sqlparse的SQL表血緣追蹤解析實現

專注的阿熊發表於2022-10-21

select

b.product_name " 產品 ",

count(a.order_id) " 訂單量 ",

b.selling_price_max " 銷售價 ",

b.gross_profit_rate_max/100 " 毛利率 ",

case when b.business_type =1 then ' 自營消化 ' when b.business_type =2 then ' 服務商消化 '  end " 消化模式 "

from(select 'CRM 簽單 ' label,date(d.update_ymd) close_ymd,c.product_name,c.product_id,

     a.order_id,cast(a.recipient_amount as double) amt,d.cost

     from mysql4.dataview_fenxiao.fx_order a

     left join mysql4.dataview_fenxiao.fx_order_task b on a.order_id = b.order_id

     left join mysql7.dataview_trade.ddc_product_info c on cast(c.product_id as varchar) = a.product_ids and c.snapshot_version = 'SELLING'

     inner join (select t1.par_order_id,max(t1.update_ymd) update_ymd,

                 sum(case when t4.product2_type = 1 and t5.shop_id is not null then t5.price else t1.order_hosted_price end) cost

                from hive.bdc_dwd.dw_mk_order t1

                left join hive.bdc_dwd.dw_mk_order_status t2 on t1.order_id = t2.order_id and t2.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

                left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id

                left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'

                left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id

                where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

                and t2.valid_state in (100,200) ------ 有效訂單

                and t1.order_mode = 10    -------- 產品消耗訂單

                and t2.complete_state = 1  ----- 訂單已經完成

                group by t1.par_order_id

     ) d on d.par_order_id  = b.task_order_id

     where c.product_type = 0 and date(from_unixtime(a.last_recipient_time)) > date('2016-01-01') and a.payee_type <> 1 ----------- 已收款

     UNION ALL

     select ' 企業管家消耗 ' label,date(c.update_ymd) close_ymd,b.product_name,b.product_id,

     a.task_id,(case when a.yb_price = 0 and b.product2_type = 1 then b.selling_price_min else a.yb_price end) amt,

     (case when a.yb_price =外匯跟單gendan5.com 0 and b.product2_type = 2 then 0 when b.product2_type = 1 and e.shop_id is not null then e.price else c.order_hosted_price end) cost

     from mysql8.dataview_tprc.tprc_task a

     left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'

     inner join hive.bdc_dwd.dw_mk_order c on a.order_id = c.order_id and c.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

     left join hive.bdc_dwd.dw_mk_order_status d on d.order_id = c.order_id and d.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

     left join mysql4.dataview_scrm.sc_tprc_product_info e on e.product_id = b.product_id and e.shop_id = c.seller_id

     where  d.valid_state in (100,200) and d.complete_state = 1  and c.order_mode = 10

     union ALL

     select ' 交易管理系統 ' label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id,

     t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt,

     (case when t1.order_mode <> 11 then t7.user_amount when t1.order_mode = 11 and t4.product2_type = 1 and t5.shop_id is not null then t5.price else t8.cost end) cost

     from hive.bdc_dwd.dw_mk_order t1

     left join hive.bdc_dwd.dw_mk_order_business t2 on t1.order_id = t2.order_id and t2.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

     left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id

     left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'

     left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id

     left join hive.bdc_dwd.dw_fact_task_ss_daily t6 on t6.task_id = t2.task_id and t6.acct_time=date_format(date_add('day',-1,current_date),'%Y-%m-%d')

     left join (select a.task_id,sum(a.user_amount) user_amount

                from hive.bdc_dwd.dw_fn_deal_asyn_order a

                where a.is_new=1 and a.service='Trade_Payment' and a.state=1 and a.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

                group by a.task_id)t7 on t7.task_id = t2.task_id          

     left join (select t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost

                from hive.bdc_dwd.dw_mk_order t1

                where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype = 4 and t1.order_mode = 12

                group by t1.par_order_id) t8 on t1.order_id = t8.par_order_id

     where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)

     and t1.order_type = 1 and t1.order_stype in (4,5) and t1.order_mode <> 12 and t4.product_id is not null and t1.order_hosted_price > 0 and t6.is_deal = 1 and t6.close_ymd >= '2018-12-31'

)a

left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'

where b.product2_type = 1 ------- 標品

and close_ymd between DATE_ADD('day',-7,CURRENT_DATE)  and DATE_ADD('day',-1,CURRENT_DATE)

GROUP BY b.product_name,

b.selling_price_max,

b.gross_profit_rate_max/100,

b.actrul_supply_num,

case when b.business_type =1 then ' 自營消化 ' when b.business_type =2 then ' 服務商消化 '  end

order by count(a.order_id) desc

limit 10

if __name__ == '__main__':

     table_names=[]

     sql=get_sqlstr('read_sql.txt')

     stmt_tuple=analysis_statements(sql)

     for each_stmt in stmt_tuple:

         type_name=get_main_functionsql(each_stmt)

         blood_table(each_stmt)

         Tree_visus(table_names,type_name)


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69946337/viewspace-2919624/,如需轉載,請註明出處,否則將追究法律責任。

相關文章