上次用Matlab寫過一個識別Mnist的神經網路,地址在:https://www.cnblogs.com/tiandsp/p/9042908.html
這次又用Keras做了一個差不多的,畢竟,現在最流行的專案都是Python做的,我也跟一下潮流:)
資料是從本地解析好的影象和標籤載入的。
神經網路有兩個隱含層,都有512個節點。
import numpy as np from keras.preprocessing import image from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation # 從資料夾影象與標籤檔案載入資料 def create_x(filenum, file_dir): train_x = [] for i in range(filenum): img = image.load_img(file_dir + str(i) + ".bmp", target_size=(28, 28)) img = img.convert('L') x = image.img_to_array(img) train_x.append(x) train_x = np.array(train_x) train_x = train_x.astype('float32') train_x /= 255 return train_x def create_y(classes, filename): train_y = [] file = open(filename, "r") for line in file.readlines(): tmp = [] for j in range(classes): if j == int(line): tmp.append(1) else: tmp.append(0) train_y.append(tmp) file.close() train_y = np.array(train_y).astype('float32') return train_y classes = 10 X_train = create_x(55000, './train/') X_test = create_x(10000, './test/') X_train = X_train.reshape(X_train.shape[0], 784) X_test = X_test.reshape(X_test.shape[0], 784) Y_train = create_y(classes, 'train.txt') Y_test = create_y(classes, 'test.txt') # 從網路下載的資料集直接解析資料 ''' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train, Y_train = mnist.train.images, mnist.train.labels X_test, Y_test = mnist.test.images, mnist.test.labels X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train = X_train.reshape(55000, 784) X_test = X_test.reshape(10000, 784) ''' model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(10)) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model.fit(X_train, Y_train, batch_size=500, epochs=20, verbose=1, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, verbose=0) test_result = model.predict(X_test) result = np.argmax(test_result, axis = 1) print(result) print('Test score:', score[0]) print('Test accuracy:', score[1])
最終在測試集上識別率在98%左右。
相關測試資料可以在這裡下載到。