JUC 常用4大併發工具類

彼岸舞發表於2020-09-26

什麼是JUC?

  JUC就是java.util.concurrent包,這個包俗稱JUC,裡面都是解決併發問題的一些東西

  該包的位置位於java下面的rt.jar包下面

4大常用併發工具類:

  CountDownLatch

  CyclicBarrier

  Semaphore

  ExChanger

 

CountDownLatch:

  CountDownLatch,俗稱閉鎖,作用是類似加強版的Join,是讓一組執行緒等待其他的執行緒完成工作以後才執行

  就比如在啟動框架服務的時候,我們主執行緒需要在環境執行緒初始化完成之後才能啟動,這時候我們就可以實現使用CountDownLatch來完成

/**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

  在原始碼中可以看到,建立CountDownLatch時,需要傳入一個int型別的引數,將決定在執行次扣減之後,等待的執行緒被喚醒

   通過這個類圖就可以知道其實CountDownLatch並沒有多少東西

  方法介紹:

    CountDownLatch:初始化方法

    await:等待方法,同時帶引數的是超時過載方法

    countDown:每執行一次,計數器減一,就是初始化傳入的數字,也代表著一個執行緒完成了任務

    getCount:獲取當前值

    toString:這個就不用說了

  裡面的Sync是一個內部類,外面的方法其實都是操作這個內部類的,這個內部類繼承了AQS,實現的標準方法,AQS將在後面的章節寫

 

主執行緒中建立CountDownLatch(3),然後主執行緒await阻塞,然後執行緒A,B,C各自完成了任務,呼叫了countDown,之後,每個執行緒呼叫一次計數器就會減一,初始是3,然後A執行緒呼叫後變成2,B執行緒呼叫後變成1,C執行緒呼叫後,變成0,這時就會喚醒正在await的主執行緒,然後主執行緒繼續執行

說一千道一萬,不如程式碼寫幾行,上程式碼:

休眠工具類,之後的程式碼都會用到

package org.dance.tools;

import java.util.concurrent.TimeUnit;

/**
 * 類說明:執行緒休眠輔助工具類
 */
public class SleepTools {

    /**
     * 按秒休眠
     * @param seconds 秒數
     */
    public static final void second(int seconds) {
        try {
            TimeUnit.SECONDS.sleep(seconds);
        } catch (InterruptedException e) {
        }
    }

    /**
     * 按毫秒數休眠
     * @param seconds 毫秒數
     */
    public static final void ms(int seconds) {
        try {
            TimeUnit.MILLISECONDS.sleep(seconds);
        } catch (InterruptedException e) {
        }
    }
}
package org.dance.day2.util;

import org.dance.tools.SleepTools;

import java.util.concurrent.CountDownLatch;

/**
 * CountDownLatch的使用,有五個執行緒,6個扣除點
 * 扣除完成後主執行緒和業務執行緒,才能執行工作
 *  扣除點一般都是大於等於需要初始化的執行緒的
 * @author ZYGisComputer
 */
public class UseCountDownLatch {

    /**
     * 設定為6個扣除點
     */
    static CountDownLatch countDownLatch = new CountDownLatch(6);

    /**
     * 初始化執行緒
     */
    private static class InitThread implements Runnable {

        @Override
        public void run() {

            System.out.println("thread_" + Thread.currentThread().getId() + " ready init work .....");

            // 執行扣減 扣減不代表結束
            countDownLatch.countDown();

            for (int i = 0; i < 2; i++) {
                System.out.println("thread_" + Thread.currentThread().getId() + ".....continue do its work");
            }

        }
    }

    /**
     * 業務執行緒
     */
    private static class BusiThread implements Runnable {

        @Override
        public void run() {

            // 業務執行緒需要在等初始化完畢後才能執行
            try {
                countDownLatch.await();
                for (int i = 0; i < 3; i++) {
                    System.out.println("BusiThread " + Thread.currentThread().getId() + " do business-----");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public static void main(String[] args) {

        // 建立單獨的初始化執行緒
        new Thread(){
            @Override
            public void run() {
                SleepTools.ms(1);
                System.out.println("thread_" + Thread.currentThread().getId() + " ready init work step 1st.....");
                // 扣減一次
                countDownLatch.countDown();
                System.out.println("begin stop 2nd.....");
                SleepTools.ms(1);
                System.out.println("thread_" + Thread.currentThread().getId() + " ready init work step 2nd.....");
                // 扣減一次
                countDownLatch.countDown();

            }
        }.start();
        // 啟動業務執行緒
        new Thread(new BusiThread()).start();
        // 啟動初始化執行緒
        for (int i = 0; i <= 3; i++) {
            new Thread(new InitThread()).start();
        }
        // 主執行緒進入等待
        try {
            countDownLatch.await();
            System.out.println("Main do ites work.....");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

    }

}

返回結果:

thread_13 ready init work .....
thread_13.....continue do its work
thread_13.....continue do its work
thread_14 ready init work .....
thread_14.....continue do its work
thread_14.....continue do its work
thread_15 ready init work .....
thread_15.....continue do its work
thread_11 ready init work step 1st.....
begin stop 2nd.....
thread_16 ready init work .....
thread_16.....continue do its work
thread_16.....continue do its work
thread_15.....continue do its work
thread_11 ready init work step 2nd.....
Main do ites work.....
BusiThread 12 do business-----
BusiThread 12 do business-----
BusiThread 12 do business-----

通過返回結果就可以很直接的看到業務執行緒是在初始化執行緒完全跑完之後,才開始執行的

 

CyclicBarrier:

  CyclicBarrier,俗稱柵欄鎖,作用是讓一組執行緒到達某個屏障,被阻塞,一直到組內的最後一個執行緒到達,然後屏障開放,接著,所有的執行緒繼續執行

  這個感覺和CountDownLatch有點相似,但是其實是不一樣的,所謂的差別,將在下面詳解

  CyclicBarrier的構造引數有兩個

/**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and
     * does not perform a predefined action when the barrier is tripped.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties) {
        this(parties, null);
    }
/**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and which
     * will execute the given barrier action when the barrier is tripped,
     * performed by the last thread entering the barrier.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @param barrierAction the command to execute when the barrier is
     *        tripped, or {@code null} if there is no action
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

很明顯能感覺出來,上面的構造引數呼叫了下面的構造引數,是一個構造方法過載

首先這個第一個引數也樹Int型別的,傳入的是執行執行緒的個數,這個數量和CountDownLatch不一樣,這個數量是需要和執行緒數量吻合的,CountDownLatch則不一樣,CountDownLatch可以大於等於,而CyclicBarrier只能等於,然後是第二個引數,第二個引數是barrierAction,這個引數是當屏障開放後,執行的任務執行緒,如果當屏障開放後需要執行什麼任務,可以寫在這個執行緒中

 

 

主執行緒建立CyclicBarrier(3,barrierAction),然後由執行緒開始執行,執行緒A,B執行完成後都呼叫了await,然後他們都在一個屏障前阻塞者,需要等待執行緒C也,執行完成,呼叫await之後,然後三個執行緒都達到屏障後,屏障開放,然後執行緒繼續執行,並且barrierAction在屏障開放的一瞬間也開始執行

上程式碼:

package org.dance.day2.util;

import org.dance.tools.SleepTools;

import java.util.Map;
import java.util.Random;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CyclicBarrier;

/**
 * CyclicBarrier的使用
 *
 * @author ZYGisComputer
 */
public class UseCyclicBarrier {

    /**
     * 存放子執行緒工作結果的安全容器
     */
    private static ConcurrentHashMap<String, Long> resultMap = new ConcurrentHashMap<>();

    private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5,new CollectThread());

    /**
     * 結果列印執行緒
     * 用來演示CyclicBarrier的第二個引數,barrierAction
     */
    private static class CollectThread implements Runnable {

        @Override
        public void run() {

            StringBuffer result = new StringBuffer();

            for (Map.Entry<String, Long> workResult : resultMap.entrySet()) {
                result.append("[" + workResult.getValue() + "]");
            }

            System.out.println("the result = " + result);
            System.out.println("do other business.....");

        }
    }

    /**
     * 工作子執行緒
     * 用於CyclicBarrier的一組執行緒
     */
    private static class SubThread implements Runnable {

        @Override
        public void run() {

            // 獲取當前執行緒的ID
            long id = Thread.currentThread().getId();

            // 放入統計容器中
            resultMap.put(String.valueOf(id), id);

            Random random = new Random();

            try {
                if (random.nextBoolean()) {
                    Thread.sleep(1000 + id);
                    System.out.println("Thread_"+id+"..... do something");
                }
                System.out.println(id+" is await");
                cyclicBarrier.await();
                Thread.sleep(1000+id);
                System.out.println("Thread_"+id+".....do its business");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }

        }
    }

    public static void main(String[] args) {

        for (int i = 0; i <= 4; i++) {
            Thread thread = new Thread(new SubThread());
            thread.start();
        }

    }

}

返回結果:

11 is await
14 is await
15 is await
Thread_12..... do something
12 is await
Thread_13..... do something
13 is await
the result = [11][12][13][14][15]
do other business.....
Thread_11.....do its business
Thread_12.....do its business
Thread_13.....do its business
Thread_14.....do its business
Thread_15.....do its business

通過返回結果可以看出前面的11 14 15三個執行緒沒有進入if語句塊,在執行到await的時候進入了等待,而另外12 13兩個執行緒進入到了if語句塊當中,多休眠了1秒多,然後當5個執行緒同時到達await的時候,屏障開放,執行了barrierAction執行緒,然後執行緒組繼續執行

解釋一下CountDownLatch和CyclicBarrier的卻別吧!

首先就是CountDownLatch的構造引數傳入的數量一般都是大於等於執行緒,數量的,因為他是有第三方控制的,可以扣減多次,然後就是CyclicBarrier的構造引數第一個引數傳入的數量一定是等於執行緒的個數的,因為他是由一組執行緒自身控制的

區別

      CountDownLatch  CyclicBarrier

控制         第三方控制       自身控制

傳入數量  大於等於執行緒數量       等於執行緒數量

 

Semaphore:

  Semaphore,俗稱訊號量,作用於控制同時訪問某個特定資源的執行緒數量,用在流量控制

  一說特定資源控制,那麼第一時間就想到了資料庫連線..

  之前用等待超時模式寫了一個資料庫連線池,打算用這個Semaphone也寫一個

/**
     * Creates a {@code Semaphore} with the given number of
     * permits and nonfair fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     */
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }

在原始碼中可以看到在構建Semaphore訊號量的時候,需要傳入許可證的數量,這個數量就是資源的最大允許的訪問的執行緒數

接下里用訊號量實現一個資料庫連線池

連線物件

package org.dance.day2.util.pool;

import org.dance.tools.SleepTools;

import java.sql.*;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.Executor;

/**
 * 資料庫連線
 * @author ZYGisComputer
 */
public class SqlConnection implements Connection {

    /**
     * 獲取資料庫連線
     * @return
     */
    public static final Connection fetchConnection(){
        return new SqlConnection();
    }

    @Override
    public void commit() throws SQLException {
        SleepTools.ms(70);
    }

    @Override
    public Statement createStatement() throws SQLException {
        SleepTools.ms(1);
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql) throws SQLException {
        return null;
    }

    @Override
    public CallableStatement prepareCall(String sql) throws SQLException {
        return null;
    }

    @Override
    public String nativeSQL(String sql) throws SQLException {
        return null;
    }

    @Override
    public void setAutoCommit(boolean autoCommit) throws SQLException {

    }

    @Override
    public boolean getAutoCommit() throws SQLException {
        return false;
    }

    @Override
    public void rollback() throws SQLException {

    }

    @Override
    public void close() throws SQLException {

    }

    @Override
    public boolean isClosed() throws SQLException {
        return false;
    }

    @Override
    public DatabaseMetaData getMetaData() throws SQLException {
        return null;
    }

    @Override
    public void setReadOnly(boolean readOnly) throws SQLException {

    }

    @Override
    public boolean isReadOnly() throws SQLException {
        return false;
    }

    @Override
    public void setCatalog(String catalog) throws SQLException {

    }

    @Override
    public String getCatalog() throws SQLException {
        return null;
    }

    @Override
    public void setTransactionIsolation(int level) throws SQLException {

    }

    @Override
    public int getTransactionIsolation() throws SQLException {
        return 0;
    }

    @Override
    public SQLWarning getWarnings() throws SQLException {
        return null;
    }

    @Override
    public void clearWarnings() throws SQLException {

    }

    @Override
    public Statement createStatement(int resultSetType, int resultSetConcurrency) throws SQLException {
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency) throws SQLException {
        return null;
    }

    @Override
    public CallableStatement prepareCall(String sql, int resultSetType, int resultSetConcurrency) throws SQLException {
        return null;
    }

    @Override
    public Map<String, Class<?>> getTypeMap() throws SQLException {
        return null;
    }

    @Override
    public void setTypeMap(Map<String, Class<?>> map) throws SQLException {

    }

    @Override
    public void setHoldability(int holdability) throws SQLException {

    }

    @Override
    public int getHoldability() throws SQLException {
        return 0;
    }

    @Override
    public Savepoint setSavepoint() throws SQLException {
        return null;
    }

    @Override
    public Savepoint setSavepoint(String name) throws SQLException {
        return null;
    }

    @Override
    public void rollback(Savepoint savepoint) throws SQLException {

    }

    @Override
    public void releaseSavepoint(Savepoint savepoint) throws SQLException {

    }

    @Override
    public Statement createStatement(int resultSetType, int resultSetConcurrency, int resultSetHoldability) throws SQLException {
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency, int resultSetHoldability) throws SQLException {
        return null;
    }

    @Override
    public CallableStatement prepareCall(String sql, int resultSetType, int resultSetConcurrency, int resultSetHoldability) throws SQLException {
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql, int autoGeneratedKeys) throws SQLException {
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql, int[] columnIndexes) throws SQLException {
        return null;
    }

    @Override
    public PreparedStatement prepareStatement(String sql, String[] columnNames) throws SQLException {
        return null;
    }

    @Override
    public Clob createClob() throws SQLException {
        return null;
    }

    @Override
    public Blob createBlob() throws SQLException {
        return null;
    }

    @Override
    public NClob createNClob() throws SQLException {
        return null;
    }

    @Override
    public SQLXML createSQLXML() throws SQLException {
        return null;
    }

    @Override
    public boolean isValid(int timeout) throws SQLException {
        return false;
    }

    @Override
    public void setClientInfo(String name, String value) throws SQLClientInfoException {

    }

    @Override
    public void setClientInfo(Properties properties) throws SQLClientInfoException {

    }

    @Override
    public String getClientInfo(String name) throws SQLException {
        return null;
    }

    @Override
    public Properties getClientInfo() throws SQLException {
        return null;
    }

    @Override
    public Array createArrayOf(String typeName, Object[] elements) throws SQLException {
        return null;
    }

    @Override
    public Struct createStruct(String typeName, Object[] attributes) throws SQLException {
        return null;
    }

    @Override
    public void setSchema(String schema) throws SQLException {

    }

    @Override
    public String getSchema() throws SQLException {
        return null;
    }

    @Override
    public void abort(Executor executor) throws SQLException {

    }

    @Override
    public void setNetworkTimeout(Executor executor, int milliseconds) throws SQLException {

    }

    @Override
    public int getNetworkTimeout() throws SQLException {
        return 0;
    }

    @Override
    public <T> T unwrap(Class<T> iface) throws SQLException {
        return null;
    }

    @Override
    public boolean isWrapperFor(Class<?> iface) throws SQLException {
        return false;
    }
}

連線池物件

package org.dance.day2.util.pool;

import java.sql.Connection;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.concurrent.Semaphore;

/**
 * 使用訊號量控制資料庫的連結和釋放
 *
 * @author ZYGisComputer
 */
public class DBPoolSemaphore {

    /**
     * 池容量
     */
    private final static int POOL_SIZE = 10;

    /**
     * useful 代表可用連線
     * useless 代表已用連線
     *  為什麼要使用兩個Semaphore呢?是因為,在連線池中不只有連線本身是資源,空位也是資源,也需要記錄
     */
    private final Semaphore useful, useless;

    /**
     * 連線池
     */
    private final static LinkedList<Connection> POOL = new LinkedList<>();

    /**
     * 使用靜態塊初始化池
     */
    static {
        for (int i = 0; i < POOL_SIZE; i++) {
            POOL.addLast(SqlConnection.fetchConnection());
        }
    }

    public DBPoolSemaphore() {
        // 初始可用的許可證等於池容量
        useful = new Semaphore(POOL_SIZE);
        // 初始不可用的許可證容量為0
        useless = new Semaphore(0);
    }

    /**
     * 獲取資料庫連線
     *
     * @return 連線物件
     */
    public Connection takeConnection() throws InterruptedException {
        // 可用許可證減一
        useful.acquire();
        Connection connection;
        synchronized (POOL) {
            connection = POOL.removeFirst();
        }
        // 不可用許可證數量加一
        useless.release();
        return connection;
    }

    /**
     * 釋放連結
     *
     * @param connection 連線物件
     */
    public void returnConnection(Connection connection) throws InterruptedException {
        if(null!=connection){
            // 列印日誌
            System.out.println("當前有"+useful.getQueueLength()+"個執行緒等待獲取連線,,"
                    +"可用連線有"+useful.availablePermits()+"個");
            // 不可用許可證減一
            useless.acquire();
            synchronized (POOL){
                POOL.addLast(connection);
            }
            // 可用許可證加一
            useful.release();
        }
    }

}

測試類:

package org.dance.day2.util.pool;

import org.dance.tools.SleepTools;

import java.sql.Connection;
import java.util.Random;

/**
 * 測試Semaphore
 * @author ZYGisComputer
 */
public class UseSemaphore {

    /**
     * 連線池
     */
    public static final DBPoolSemaphore pool = new DBPoolSemaphore();

    private static class BusiThread extends Thread{
        @Override
        public void run() {
            // 隨機數工具類 為了讓每個執行緒持有連線的時間不一樣
            Random random = new Random();
            long start = System.currentTimeMillis();
            try {
                Connection connection = pool.takeConnection();
                System.out.println("Thread_"+Thread.currentThread().getId()+
                        "_獲取資料庫連線耗時["+(System.currentTimeMillis()-start)+"]ms.");
                // 模擬使用連線查詢資料
                SleepTools.ms(100+random.nextInt(100));
                System.out.println("查詢資料完成歸還連線");
                pool.returnConnection(connection);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    public static void main(String[] args) {
        for (int i = 0; i < 50; i++) {
            BusiThread busiThread = new BusiThread();
            busiThread.start();
        }
    }

}

測試返回結果:

Thread_11_獲取資料庫連線耗時[0]ms.
Thread_12_獲取資料庫連線耗時[0]ms.
Thread_13_獲取資料庫連線耗時[0]ms.
Thread_14_獲取資料庫連線耗時[0]ms.
Thread_15_獲取資料庫連線耗時[0]ms.
Thread_16_獲取資料庫連線耗時[0]ms.
Thread_17_獲取資料庫連線耗時[0]ms.
Thread_18_獲取資料庫連線耗時[0]ms.
Thread_19_獲取資料庫連線耗時[0]ms.
Thread_20_獲取資料庫連線耗時[0]ms.
查詢資料完成歸還連線
當前有40個執行緒等待獲取連線,,可用連線有0個
Thread_21_獲取資料庫連線耗時[112]ms.
查詢資料完成歸還連線
...................
查詢資料完成歸還連線 當前有2個執行緒等待獲取連線,,可用連線有0個 Thread_59_獲取資料庫連線耗時[637]ms. 查詢資料完成歸還連線 當前有1個執行緒等待獲取連線,,可用連線有0個 Thread_60_獲取資料庫連線耗時[660]ms. 查詢資料完成歸還連線 當前有0個執行緒等待獲取連線,,可用連線有0個 查詢資料完成歸還連線
................... 當前有0個執行緒等待獲取連線,,可用連線有8個 查詢資料完成歸還連線 當前有0個執行緒等待獲取連線,,可用連線有9個

通過執行結果可以很明確的看到,一上來就有10個執行緒獲取到了連線,,然後後面的40個執行緒進入阻塞,然後只有釋放連結之後,等待的執行緒就會有一個拿到,然後越後面的執行緒等待的時間就越長,然後一直到所有的執行緒執行完畢

最後列印的可用連線有九個不是因為少了一個是因為在釋放之前列印的,不是錯誤

從結果中可以看到,我們對連線池中的資源的到了控制,這就是訊號量的流量控制

 

Exchanger:

  Exchanger,俗稱交換器,用於線上程之間交換資料,但是比較受限,因為只能兩個執行緒之間交換資料

/**
     * Creates a new Exchanger.
     */
    public Exchanger() {
        participant = new Participant();
    }

這個建構函式沒有什麼好說的,也沒有入參,只有在建立的時候指定一下需要交換的資料的泛型即可,下面看程式碼

package org.dance.day2.util;

import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.Exchanger;

/**
 * 執行緒之間交換資料
 * @author ZYGisComputer
 */
public class UseExchange {

    private static final Exchanger<Set<String>> exchanger = new Exchanger<>();

    public static void main(String[] args) {

        new Thread(){
            @Override
            public void run() {
                Set<String> aSet = new HashSet<>();
                aSet.add("A");
                aSet.add("B");
                aSet.add("C");
                try {
                    Set<String> exchange = exchanger.exchange(aSet);
                    for (String s : exchange) {
                        System.out.println("aSet"+s);
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }.start();

        new Thread(){
            @Override
            public void run() {
                Set<String> bSet = new HashSet<>();
                bSet.add("1");
                bSet.add("2");
                bSet.add("3");
                try {
                    Set<String> exchange = exchanger.exchange(bSet);
                    for (String s : exchange) {
                        System.out.println("bSet"+s);
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }.start();

    }

}

執行結果:

bSetA
bSetB
bSetC
aSet1
aSet2
aSet3

通過執行結果可以清晰的看到,兩個執行緒中的資料發生了交換,這就是Exchanger的執行緒資料交換了

以上就是JUC的4大常用併發工具類了

作者:彼岸舞

時間:2020\09\26

內容關於:併發程式設計

本文來源於網路,只做技術分享,一概不負任何責任

 

相關文章