神經網路學習參考
轉自https://blog.csdn.net/l297969586/article/details/71159675
vm配置:http://blog.csdn.net/u013142781/article/details/50529030
CMakeLists.txt: http://blog.csdn.net/z_h_s/article/details/50699905莫煩python: https://morvanzhou.github.io/
廖雪峰git與python: https://www.liaoxuefeng.com/
~~ios上實現小規模yolo模型: http://colabug.com/107304.html
影像檢測彙總: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#t-cnn
壓縮caffemodel: https://github.com/RalphMao/demo_nn_compress
實時車輛檢測: https://github.com/upul/CarND-Vehicle-Detection
MPII行人位姿資料集,可PK: http://human-pose.mpi-inf.mpg.de/#overview
識別領域彙總: http://www.cnblogs.com/zlslch/p/6970680.html
xnor採訪名言: https://techcrunch.com/2017/01/19/xnor-ai-frees-ai-from-the-prison-of-the-supercomputer/
部落格專欄: http://blog.csdn.net/column/mycolumn.html
多人位姿檢測(骨骼點)2017: https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
github 57個最火熱的框架: http://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github
0、以後有用
Boosted Tree:一篇很有見識的文章 http://dataunion.org/15787.html
Kaggle—So Easy!百行程式碼實現排名Top 5%的影像分類比賽 :
http://blog.csdn.net/v_july_v/article/details/71598551
卷積的尺度和位置不變形解析:https://www.quora.com/How-is-a-convolutional-neural-network-able-to-learn-invariant-features
1.LSTM與RNN
官方:http://colah.github.io/posts/2015-08-Understanding-LSTMs/
翻譯:http://www.jianshu.com/p/9dc9f41f0b29
cs231n老師的部落格:http://karpathy.github.io/2015/05/21/rnn-effectiveness/
這個是我見得寫的最好的RNN,裡面還有關於機器翻譯,語音識別,語言模式,影像描述的論文,絕了:http://blog.csdn.net/heyongluoyao8/article/details/48636251
影像描述論文(cs231n的Andrej Karpathy)與github程式碼地址:
http://cs.stanford.edu/people/karpathy/deepimagesent/
https://github.com/karpathy/neuraltalk
2.YOLO2訓練自己的資料集
http://lib.csdn.net/article/deeplearning/57863?knId=1726
http://blog.csdn.net/samylee/article/details/53414108
V1版:http://blog.csdn.net/sinat_30071459/article/details/53100791
3.faster訓練自己的資料集
http://blog.csdn.net/sinat_30071459/article/details/51332084
http://blog.csdn.net/sinat_30071459/article/details/50723212
4、深度學習
類似cs231n:http://blog.csdn.net/u014595019/article/details/52571966
大牛:http://blog.csdn.net/xbinworld/article/details/44464663
大牛!全:http://blog.csdn.net/hjimce/article/details/49255013
基礎深度學習,有程式碼:
https://www.zybuluo.com/hanbingtao/note/433855
Deep Learning Tutorials
http://www.deeplearning.net/tutorial/
BN層原理:http://www.cnblogs.com/stingsl/p/6428694.html
5.Theano學習
學習指南翻譯(版本1):
http://www.cnblogs.com/xueliangliu/archive/2013/04/03/2997437.html
學習指南翻譯(版本2):
http://www.cnblogs.com/charleshuang/p/3648804.html
官方:
http://deeplearning.net/software/theano/tutorial/
★github示例:
https://github.com/Newmu/Theano-Tutorials
★挺全的theano知識點講解
http://www.cnblogs.com/shouhuxianjian/category/699462.html
theano函式官方文件:
http://deeplearning.net/software/theano/library/tensor/basic.html
簡單易懂:
http://www.cnblogs.com/YiXiaoZhou/p/6079428.html
keras官方文件:http://keras-cn.readthedocs.io/en/latest/
6.python基礎
super:http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035005.html
format:http://www.jb51.net/article/63672.htm
anaconda安裝tensorflow:
http://www.cnblogs.com/aloiswei/p/6510355.html
7.lua
lua物件導向程式設計,寫的很透徹:
http://www.jellythink.com/archives/529
.與:區別:
http://www.cnblogs.com/youxilua/archive/2011/07/28/2119059.html
元表方法:
http://www.cnblogs.com/JimLy-BUG/p/5364281.html
8.mxnet
https://github.com/dmlc/mxnet
BMNet:https://github.com/hpi-xnor/BMXNet
9.torch
卷積層原始碼:http://blog.csdn.net/shenxiaolu1984/article/details/52373174
tensor操作:http://blog.csdn.net/whgyxy/article/details/52204206
60分鐘學torch:
原版:https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb
翻譯:http://blog.csdn.net/baidu_17806763/article/details/61630538
torch學習資料:http://blog.csdn.net/victoriaw/article/details/71703568
torch學習系列(1),包含tensor操作:http://blog.csdn.net/whgyxy/article/category/6352333
torch學習系列(2)http://blog.csdn.net/u010946556/article/category/6216156
torch.nn模組學習(還有tensorflow、matlab、softmax問題):http://blog.csdn.net/hejunqing14/article/category/6356970
torch學習系列(3):http://blog.csdn.net/Hungryof/article/category/6245605
torch、自己建立一個層(如xnor):https://zhuanlan.zhihu.com/p/21550685
官方:http://torch.ch/docs/developer-docs.html
一些torch小函式:http://blog.csdn.net/JIEJINQUANIL/article/category/5884857
關於torch建立層彙總:
http://blog.csdn.net/lanran2/article/details/50494570
http://lib.csdn.net/article/deeplearning/51259
http://www.cnblogs.com/crossing/p/4826668.html
http://torch.ch/docs/developer-docs.html
10.Tensorflow-faster
tensorflow與Keras(Keras中文官方文件):https://keras-cn.readthedocs.io/en/latest/blog/keras_and_tensorflow/
Tensorflow-API:https://www.tensorflow.org/api_docs/
Faster-RCNN_TF:https://github.com/smallcorgi/Faster-RCNN_TF
tf-faster-rcnn:https://github.com/endernewton/tf-faster-rcnn
將tensorflow移植到android手機實現物體識別!!http://blog.csdn.net/xiaopihaierletian/article/details/61933695
tensorflow-API:http://www.jianshu.com/nb/5517733
常用函式:http://blog.csdn.net/lenbow/article/details/52152766
tensorflow基礎學習部落格:http://blog.csdn.net/u012436149/article/details/53018924
tensorflow應用較全:http://blog.csdn.net/helei001/article/details/51842531
11、faster
http://blog.csdn.net/wopawn/article/details/52223282
demo.py解析
論文解析,很好:http://blog.csdn.net/wopawn/article/details/52223282#reply
論文翻譯,這人有一套rcnn部落格:http://blog.csdn.net/u011534057/article/details/51259812
overfeat:http://blog.sciencenet.cn/blog-1583812-844178.html
rpn程式碼解析:http://blog.csdn.net/sloanqin/article/details/51545125
12、安裝tcl/tk和Tkinter
http://blog.csdn.net/cryhelyxx/article/details/22514871
13、在閱讀Faster-RCNN_TF程式碼中觀看的部落格:
os.path:http://book.51cto.com/art/201405/440066.htm
eastdict:https://pypi.python.org/pypi/easydict/
strip:http://www.cnblogs.com/itdyb/p/5046472.html
zip:http://www.cnblogs.com/frydsh/archive/2012/07/10/2585370.html
range與xrange:http://blog.csdn.net/ithomer/article/details/17285449
xml.etree.ElementTree:http://www.cnblogs.com/hongten/p/hongten_python_xml_etree_elementtree.html
xml檔案解析:http://blog.csdn.net/zhangjunbob/article/details/52769381
http://blog.csdn.net/gingerredjade/article/details/21944675
@作用:http://blog.sina.com.cn/s/blog_571b19a001013h7j.html
stack:http://blog.csdn.net/huruzun/article/details/39801217
generate_anchors.py註釋:http://blog.csdn.net/xzzppp/article/details/52317863
numpy.ravel() vs numpy.flatten() :http://blog.csdn.net/lanchunhui/article/details/50354978
meshgrid:http://blog.csdn.net/grey_csdn/article/details/69663432
anchor產生的問題:http://blog.csdn.net/zqjackking/article/details/59725989
bbox.pyx:http://blog.csdn.net/guotong1988/article/details/54729530
tf.nn.softmax_cross_entropy_with_logits:http://blog.csdn.net/mao_xiao_feng/article/details/53382790
tensor與ndarray操作與轉換:http://blog.csdn.net/wyl1987527/article/details/62458057
★變數、相關變數初始化、儲存:http://www.cnblogs.com/claude-gyh/p/6554322.html
saver:http://blog.csdn.net/u011500062/article/details/51728830
uninitial error:https://stackoverflow.com/questions/34001922/failedpreconditionerror-attempting-to-use-uninitialized-in-tensorflow
★與模型儲存讀取(saver)相關的一切操作:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/
翻譯:http://blog.163.com/wujiaxing009@126/blog/static/7198839920175671529472/
其餘相關:http://www.cnblogs.com/azheng333/archive/2017/06/09/6972619.html
http://blog.csdn.net/thriving_fcl/article/details/71423039
http://www.jianshu.com/p/8487db911d9a
http://blog.csdn.net/u014659656/article/details/53954793
tf.trainable_variables與tf.all_variables:http://blog.csdn.net/uestc_c2_403/article/details/72356448
tf.gradients 與 tf.stop_gradient() :http://blog.csdn.net/u012436149/article/details/53905797
14、haar與adaboost
利用OpenCV自帶的haar training程式訓練分類器 :http://blog.csdn.net/carson2005/article/details/8171571
http://blog.csdn.net/liulina603/article/details/8184451
haar原理:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html
http://blog.csdn.net/bbzz2/article/details/50764159
dlib+opencv人臉特徵檢測:http://blog.csdn.net/zmdsjtu/article/details/52422847
訓練常見問題:http://www.cnblogs.com/chensheng-zhou/p/5542887.html
15、dlib array2d與Mat
https://stackoverflow.com/questions/29118317/how-to-convert-mat-to-array2drgb-pixel
http://blog.csdn.net/huixingshao/article/details/55510950
http://blog.csdn.net/qq_26671711/article/details/53713529
http://blog.csdn.net/yubin1277408629/article/details/53561037
16、三維重建
vcglib -github:https://github.com/cnr-isti-vclab/vcglib
win10+vs+cuda :http://blog.csdn.net/u011821462/article/details/50145221
★三維視覺化工程:http://redwood-data.org/indoor/tutorial.html
win10+vs2015 meshlab編譯 :http://blog.csdn.net/hanshuobest/article/details/71525388
windows-git:http://blog.csdn.net/qq_34698126/article/details/53521187
17、kinfu環境配置
kinfu安裝配置全解:http://blog.csdn.net/alan_1550587588/article/details/54582192
VS2010和IVF2011的安裝教程 Fortran:
http://wenku.baidu.com/view/9e28de1b01f69e314332949c.html
Fortran認證照Intel_Visual_Fortran_XE2011.lic:
http://pan.baidu.com/s/1kT9lR8r
ros下使用kinfu:http://blog.csdn.net/l_h2010/article/details/38349927
18、c++
c++筆記:http://www.cnblogs.com/ggjucheng/archive/2012/08/18/2645319.html
typedef:http://blog.csdn.net/ameyume/article/details/6326278
指標的指標:http://blog.jobbole.com/60647/
成員函式指標:http://blog.csdn.net/jinjinclouded/article/details/5189540
c++指標:http://www.cnblogs.com/ggjucheng/archive/2011/12/13/2286391.html
qt學習:http://www.kuqin.com/qtdocument/tutorial.html
argc和argv含義及用法 :http://blog.csdn.net/dcrmg/article/details/51987413
虛擬函式與純虛擬函式:http://blog.csdn.net/xwpc702/article/details/8670025
http://blog.csdn.net/hackbuteer1/article/details/7558868
19、ELL
安裝中出現問題解決(中文)部落格:https://www.codelast.com/%e5%8e%9f%e5%88%9b-%e5%9c%a8ubuntu-14-04%e7%b3%bb%e7%bb%9f%e4%b8%ad%e4%b8%baell%e5%ae%89%e8%a3%85python-3-6-%e9%80%9a%e8%bf%87miniconda/
https://www.codelast.com/%e5%8e%9f%e5%88%9b-%e5%9c%a8%e6%a0%91%e8%8e%93%e6%b4%be3%e4%b8%8a%e4%bd%bf%e7%94%a8%e5%be%ae%e8%bd%afell%e5%b5%8c%e5%85%a5%e5%bc%8f%e5%ad%a6%e4%b9%a0%e5%ba%931/
20、光流測速度
http://blog.csdn.net/chentravelling/article/details/50924144
http://blog.csdn.net/taily_duan/article/details/51011288
http://blog.csdn.net/zouxy09/article/details/8683859
http://blog.csdn.net/dcrmg/article/details/52684477
http://blog.csdn.net/crzy_sparrow/article/details/7407604
載入深度資訊求速度原理:
21、識別走過的彎路:
【人體姿態】Stacked Hourglass演算法詳解 (torch程式碼):http://blog.csdn.net/shenxiaolu1984/article/details/51428392
Object Detection︱RCNN、faster-RCNN框架的淺讀與延伸內容筆記 :
http://blog.csdn.net/roslei/article/details/73459873
ipython-notebook caffe識別與視覺化:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb#Classification:-Instant-Recognition-with-Caffe
22、語義分割與識別
FCN-github:https://github.com/shelhamer/fcn.berkeleyvision.org
fcn-知乎:https://zhuanlan.zhihu.com/p/22976342
FCN-CRF:https://zhuanlan.zhihu.com/p/22308032
23、deep compression與SqueezeNet
SqueezeNet-github:https://github.com/DeepScale/SqueezeNet
Deep Compression閱讀理解及Caffe原始碼修改 :http://blog.csdn.net/may0324/article/details/52935869
閱讀理解:
http://blog.csdn.net/zijin0802034/article/details/53982812
http://blog.csdn.net/boon_228/article/details/51718521
http://blog.csdn.net/cyh_24/article/details/51708469
http://blog.csdn.net/joshuaxx316/article/details/52514978
壓縮caffemodel:https://github.com/RalphMao/demo_nn_compress
SqueezeNet+Faster-RCNN+OHEM:http://blog.csdn.net/u011956147/article/details/53714616
24、TFFRCNN(基於Faster-RCNN_TF修改)
https://github.com/CharlesShang/TFFRCNN,內含PVANET模型
執行TFFRCNN:http://blog.csdn.net/yuexin2/article/details/75019330
TFRRCNN訓練自己的模型:http://blog.csdn.net/yuexin2/article/details/75025720
25、嵌入式網路
CNN 模型壓縮與加速演算法綜述 :http://blog.csdn.net/QcloudCommunity/article/details/77719498
YOLO對比SVM+HOG 耗時更短 處理更精確(附github資源):http://www.weiot.net/article-59672.html
LCDet:http://blog.csdn.net/zhangjunhit/article/details/72831440
PVANet(TFFRCNN中有):https://arxiv.org/pdf/1608.08021.pdf
http://blog.csdn.net/wydbyxr/article/details/68931337
mobilenet:http://blog.csdn.net/zchang81/article/details/73321202
//(有實現連結)http://blog.csdn.net/mao_feng/article/details/75116085
//論文翻譯:https://baijiahao.baidu.com/s?id=1566004753349359&wfr=spider&for=pc
ARM-NEON:http://blog.csdn.net/qiek/article/details/50900890
http://blog.csdn.net/ljp12345/article/details/53490094
popcnt:http://www.cnblogs.com/zyl910/archive/2012/11/02/testpopcnt.html
26、有用知乎
https://www.zhihu.com/question/39921464
https://www.zhihu.com/question/53697001
https://www.zhihu.com/question/27872849
27.卷積加速相關
http://blog.csdn.net/mao_kun/article/details/54882528
http://blog.csdn.net/u010620604/article/details/52464529
28.CMakeLists
http://www.360doc.com/content/12/0507/10/9369336_209205930.shtml
http://blog.csdn.net/zhubaohua_bupt/article/details/52760411
29.強化學習
david 9:http://nooverfit.com/wp/15-%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0101-%E9%97%AA%E7%94%B5%E5%85%A5%E9%97%A8-reinforcement-learning/
精彩:http://www.cnblogs.com/jinxulin/p/3517377.html
知乎大神:https://www.zhihu.com/question/41775291
30、3D-deeplearning-face_detector
https://zhuanlan.zhihu.com/p/24816781
31、xnor相關工程與討論
https://github.com/allenai/XNOR-Net/issues
https://github.com/jiecaoyu/XNOR-Net-PyTorch
https://github.com/tensorflow/tensorflow/issues/1592
https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/loswensiana/BWN-XNOR-caffe/tree/master/examples/imagenet
https://github.com/tensorflow/tensorflow/tree/master/third_party/eigen3/unsupported/Eigen/CXX11/src/FixedPoint
☆修改梯度相關 http://blog.csdn.net/buyi_shizi/article/details/51512848
http://blog.csdn.net/yihaizhiyan/article/details/44159063
32、FCN訓練自己的資料集
詳細版本:http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=1&fps=1
http://blog.csdn.net/zoro_lov3/article/details/74550735
http://blog.csdn.net/z13653662052/article/details/70949440
http://blog.csdn.net/supe_king/article/details/58121993
http://blog.csdn.net/u010402786/article/details/72883421
http://www.cnblogs.com/xuanxufeng/p/6243342.html
https://github.com/315386775/FCN_train
https://github.com/msracver/FCIS
33、伺服器搭建
http://blog.csdn.net/totodum/article/details/51059380
http://blog.csdn.net/fishman_yinwang/article/details/78029309
http://blog.csdn.net/jiaojialulu/article/details/77430563
34、推薦系統
https://github.com/jfkirk/tensorrec
https://github.com/bnak/Recommendations_Engine
https://github.com/songgc/TF-recomm
https://github.com/sonyisme/keras-recommendation
https://github.com/geeky-bit/Recommendation_systems-using-SVD-KNN-etc
https://github.com/amzn/amazon-dsstne
recommendation decomposition
https://www.douban.com/note/510047571/
https://github.com/Lockvictor/MovieLens-RecSys
http://blog.csdn.net/u011467621/article/details/48624973
https://github.com/joeyqzhou/recommendation-system
講解:http://blog.csdn.net/joycewyj/article/details/51692976
https://github.com/chengstone/movie_recommender
http://blog.csdn.net/chengcheng1394/article/details/78820529
35、caffe
https://github.com/loswensiana/BWN-XNOR-caffe
新增新層:
https://blog.csdn.net/shuzfan/article/details/51322976(cutoff)
https://blog.csdn.net/wfei101/article/details/76735760(盜版)
https://blog.csdn.net/kuaitoukid/article/details/41865803(maxout與NIN)
https://blog.csdn.net/xizero00/article/details/52529341(影像縮放)
https://blog.csdn.net/happyflyy/article/details/54866037(maxout)
caffe函式解析:
https://blog.csdn.net/seven_first/article/details/47378697
caffe卷積實現原理:
https://blog.csdn.net/jiongnima/article/details/69055941
im2col原理:
https://blog.csdn.net/jiongnima/article/details/69736844
相關文章
- bp神經網路學習神經網路
- 神經網路架構參考:2-2 卷積篇神經網路架構卷積
- 【深度學習篇】--神經網路中的卷積神經網路深度學習神經網路卷積
- 神經網路和深度學習神經網路深度學習
- ai學習參考路線AI
- 【深度學習】神經網路入門深度學習神經網路
- 再聊神經網路與深度學習神經網路深度學習
- 深度學習與圖神經網路深度學習神經網路
- AI之(神經網路+深度學習)AI神經網路深度學習
- 大資料經典學習路線(及供參考)大資料
- 卷積神經網路學習筆記——Siamese networks(孿生神經網路)卷積神經網路筆記
- 漸進學習前饋神經網路神經網路
- 【卷積神經網路學習】(4)機器學習卷積神經網路機器學習
- 【深度學習】1.4深層神經網路深度學習神經網路
- 深度學習教程 | 深層神經網路深度學習神經網路
- 深度學習三:卷積神經網路深度學習卷積神經網路
- 卷積神經網路學習資料卷積神經網路
- 神經網路和深度學習(1):前言神經網路深度學習
- 人工神經網路:競爭型學習神經網路
- 深度學習系列(2)——神經網路與深度學習深度學習神經網路
- 深度學習與神經網路學習筆記一深度學習神經網路筆記
- 深度學習與圖神經網路學習分享:CNN 經典網路之-ResNet深度學習神經網路CNN
- 深度學習筆記------卷積神經網路深度學習筆記卷積神經網路
- 深度學習之上,圖神經網路(GNN )崛起深度學習神經網路GNN
- 卷積神經網路CNN-學習1卷積神經網路CNN
- 深度學習卷積神經網路筆記深度學習卷積神經網路筆記
- 深度學習之step by step搭建神經網路深度學習神經網路
- 全連線神經網路學習筆記神經網路筆記
- 深度學習迴圈神經網路詳解深度學習神經網路
- 神經網路和深度學習簡史(全)神經網路深度學習
- 深度學習之RNN(迴圈神經網路)深度學習RNN神經網路
- 第48周學習總結——神經網路神經網路
- 深入研究神經網路和深度學習神經網路深度學習
- 神經網路和深度學習簡史(一)神經網路深度學習
- NLP任務中可參考的神經網路架構(Keras+TensorFlow)神經網路架構Keras
- 吳恩達《神經網路與深度學習》課程筆記(4)– 淺層神經網路吳恩達神經網路深度學習筆記
- 吳恩達《神經網路與深度學習》課程筆記(5)– 深層神經網路吳恩達神經網路深度學習筆記
- 深度學習經典卷積神經網路之AlexNet深度學習卷積神經網路