Intel MKL 在VS中的配置與安裝筆記

sun123704發表於2018-07-20

轉自:https://blog.csdn.net/caoenze/article/details/46699327

mkl 使用手冊下載:http://download.csdn.net/detail/caoenze/8855821


  1. 從intel官網下載c_studio_xe_2013_sp1_update3_setup.exe檔案(完全離線安裝包)
  2. 雙擊.exe檔案,自動提取檔案並進入安裝引導
  3. 安裝完成後,配置VS2010(前提是本機已正確安裝過VS2010)
  4. 新建一C++專案,比如win32控制檯專案:MKL_TEST
  5. 點選選單欄 專案——》MKL_TEST屬性——》配置屬性——》VC++目錄:
    可執行檔案目錄新增:C:\Program Files (x86)\Intel\Composer XE\mkl\bin\ia32
    包含目錄新增:C:\Program Files (x86)\Intel\Composer XE\mkl\include
    庫目錄新增:C:\Program Files (x86)\Intel\Composer XE\mkl\lib\ia32
    注意:包含目錄不區分ia32和intel64
    Bin和lib目錄區分ia32和intel64根據自己的CPU架構選擇。
    IA32可以認為是X86或者X86-32
    Intel64:intel與HP聯合開發的64-bits全新架構,與X86不相容,沒有太大市場。
    6 、聯結器——》輸入
    附加依賴項:新增
    mkl_intel_c.lib
    mkl_intel_thread.lib
    mkl_core.lib
    libiomp5mt.lib//我只新增了前三個,新增第4個,編譯時提示找不到此庫
    7、配置屬性——Intel Performance Library
    右側Use Intel MKL :
    選擇Parallel
    其它兩項可以選擇性配置,不配置也可以。
    8、至此,VS2010呼叫MKL已配置完畢,可在MKL_TEST專案裡新增原始檔main.c 測試程式碼如下:
#define min(x,y) (((x) < (y)) ? (x) : (y))

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
    double *A, *B, *C;
    int m, n, k, i, j;
    double alpha, beta;

    printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n"
            " Intel® MKL function dgemm, where A, B, and  C are matrices and \n"
            " alpha and beta are double precision scalars\n\n");

    m = 2000, k = 200, n = 1000;
    printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
            " A(%ix%i) and matrix B(%ix%i)\n\n", m, k, k, n);
    alpha = 1.0; beta = 0.0;

    printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
            " performance \n\n");
    A = (double *)mkl_malloc( m*k*sizeof( double ), 64 );
    B = (double *)mkl_malloc( k*n*sizeof( double ), 64 );
    C = (double *)mkl_malloc( m*n*sizeof( double ), 64 );
    if (A == NULL || B == NULL || C == NULL) {
      printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n");
      mkl_free(A);
      mkl_free(B);
      mkl_free(C);
      return 1;
    }

    printf (" Intializing matrix data \n\n");
    for (i = 0; i < (m*k); i++) {
        A[i] = (double)(i+1);
    }

    for (i = 0; i < (k*n); i++) {
        B[i] = (double)(-i-1);
    }

    for (i = 0; i < (m*n); i++) {
        C[i] = 0.0;
    }

    printf (" Computing matrix product using Intel® MKL dgemm function via CBLAS interface \n\n");
    cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 
                m, n, k, alpha, A, k, B, n, beta, C, n);
    printf ("\n Computations completed.\n\n");

    printf (" Top left corner of matrix A: \n");
    for (i=0; i<min(m,6); i++) {
      for (j=0; j<min(k,6); j++) {
        printf ("%12.0f", A[j+i*k]);
      }
      printf ("\n");
    }

    printf ("\n Top left corner of matrix B: \n");
    for (i=0; i<min(k,6); i++) {
      for (j=0; j<min(n,6); j++) {
        printf ("%12.0f", B[j+i*n]);
      }
      printf ("\n");
    }

    printf ("\n Top left corner of matrix C: \n");
    for (i=0; i<min(m,6); i++) {
      for (j=0; j<min(n,6); j++) {
        printf ("%12.5G", C[j+i*n]);
      }
      printf ("\n");
    }

    getchar();
    printf ("\n Deallocating memory \n\n");
    mkl_free(A);
    mkl_free(B);
    mkl_free(C);

    printf (" Example completed. \n\n");
    return 0;
}

結果展示

相關文章