Python記憶體管理機制-《原始碼解析》

JonPan發表於2020-06-06

Python 記憶體管理分層架構

/* An object allocator for Python.

   Here is an introduction to the layers of the Python memory architecture,
   showing where the object allocator is actually used (layer +2), It is
   called for every object allocation and deallocation (PyObject_New/Del),
   unless the object-specific allocators implement a proprietary allocation
   scheme (ex.: ints use a simple free list). This is also the place where
   the cyclic garbage collector operates selectively on container objects.


    Object-specific allocators
    _____   ______   ______       ________
   [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
    _______________________________       |                           |
   [   Python's object allocator   ]      |                           |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
    ______________________________________________________________    |
   [          Python's raw memory allocator (PyMem_ API)          ]   |
+1 | <----- Python memory (under PyMem manager's control) ------> |   |
    __________________________________________________________________
   [    Underlying general-purpose allocator (ex: C library malloc)   ]
 0 | <------ Virtual memory allocated for the python process -------> |

   =========================================================================
    _______________________________________________________________________
   [                OS-specific Virtual Memory Manager (VMM)               ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
    __________________________________   __________________________________
   [                                  ] [                                  ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

*/

reference:Objects/obmalloc.c

layer 3: Object-specific memory(int/dict/list/string....)
		python 實現並維護
		使用者對Python物件的直接操作,主要是各類特定物件的緩衝池機制,緩衝池,比如小整數物件池等等
layer 2: Python's object allocator
		實現了建立/銷燬python物件的介面(PyObject_New/Del),涉及物件引數/引用計數等

layer 1: Python's raw memory allocator (PyMem_ API)
		包裝了第0層的記憶體管理介面,提供同一個raw memory管理介面
		封裝的原因:不同作業系統C行為不一致,保證可移植性,相同語義相同行為
		
layer 0: Underlying general-purpose allocator (ex: C library malloc)
		作業系統提供的記憶體管理介面,由作業系統實現並管理,Python不能干涉這一層的行為,大記憶體 分配呼叫malloc函式分配記憶體

Python 記憶體分配策略之-block,pool

Python中有分為大記憶體和小記憶體,512K為分界線

  • 大記憶體使用系統malloc進行分配

  • 小記憶體使用python記憶體池進行分配

1. 如果要分配的記憶體空間大於 SMALL_REQUEST_THRESHOLD bytes(512 bytes), 將直接使用layer 1的記憶體分配介面進行分配
2. 否則, 使用不同的block來滿足分配需求
申請一塊大小28位元組的記憶體, 實際從記憶體中劃到32位元組的一個block (從size class index為3的pool裡面劃出)

block

記憶體塊block 是python記憶體的最小單位

* For small requests we have the following table:
 *
 * Request in bytes     Size of allocated block      Size class idx
 * ----------------------------------------------------------------
 *        1-8                     8                       0
 *        9-16                   16                       1
 *       17-24                   24                       2
 *       25-32                   32                       3
 *       33-40                   40                       4
 *       41-48                   48                       5
 *       49-56                   56                       6
 *       57-64                   64                       7
 *       65-72                   72                       8
 *        ...                   ...                     ...
 *      497-504                 504                      62
 *      505-512                 512                      63
 *
 *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
 *      allocator.
 */

pool

pool記憶體池,管理block, 一個pool管理著一堆固定大小的記憶體塊,在Python中, 一個pool的大小通常為一個系統記憶體頁. 4kB

#define SYSTEM_PAGE_SIZE        (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)

#define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
#define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK

pool的4kB記憶體 = pool_header + block集合(N多大小一樣的block)

typedef uint8_t block;

/* Pool for small blocks. */
struct pool_header {
    union { block *_padding;
            uint count; } ref;          /* number of allocated blocks    */
    block *freeblock;                   /* pool's free list head         */
    struct pool_header *nextpool;       /* next pool of this size class  */
    struct pool_header *prevpool;       /* previous pool       ""        */
    uint arenaindex;                    /* index into arenas of base adr */
    uint szidx;                         /* block size class index        */
    uint nextoffset;                    /* bytes to virgin block         */
    uint maxnextoffset;                 /* largest valid nextoffset      */
};

pool_header 作用

與其他pool連結, 組成雙向連結串列
2. 維護pool中可用的block, 單連結串列
3. 儲存 szidx , 這個和該pool中block的大小有關係, (block size=8, szidx=0), (block size=16, szidx=1)...用於記憶體分配時匹配到擁有對應大小block的pool

image.png

pool 初始化

void *
PyObject_Malloc(size_t nbytes)
{
  ...

          init_pool:
            // 1. 連線到 used_pools 雙向連結串列, 作為表頭
            // 注意, 這裡 usedpools[0] 儲存著 block size = 8 的所有used_pools的表頭
            /* Frontlink to used pools. */
            next = usedpools[size + size]; /* == prev */
            pool->nextpool = next;
            pool->prevpool = next;
            next->nextpool = pool;
            next->prevpool = pool;
            pool->ref.count = 1;

            // 如果已經初始化過了...這裡看初始化, 跳過
            if (pool->szidx == size) {
                /* Luckily, this pool last contained blocks
                 * of the same size class, so its header
                 * and free list are already initialized.
                 */
                bp = pool->freeblock;
                pool->freeblock = *(block **)bp;
                UNLOCK();
                return (void *)bp;
            }


            /*
             * Initialize the pool header, set up the free list to
             * contain just the second block, and return the first
             * block.
             */
            // 開始初始化pool_header
            // 這裡 size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;  其實是Size class idx, 即szidx
            pool->szidx = size;

            // 計算獲得每個block的size
            size = INDEX2SIZE(size);

            // 注意 #define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
            // bp => 初始化為pool + pool_header size,  跳過pool_header的記憶體
            bp = (block *)pool + POOL_OVERHEAD;

            // 計算偏移量, 這裡的偏移量是絕對值
            // #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
            // POOL_SIZE = 4kb, POOL_OVERHEAD = pool_header size
            // 下一個偏移位置: pool_header size + 2 * size
            pool->nextoffset = POOL_OVERHEAD + (size << 1);
            // 4kb - size
            pool->maxnextoffset = POOL_SIZE - size;

            // freeblock指向 bp + size = pool_header size + size
            pool->freeblock = bp + size;

            // 賦值NULL
            *(block **)(pool->freeblock) = NULL;
            UNLOCK();
            return (void *)bp;
        }

image.png

pool 進行block分配 - 總體程式碼

  if (pool != pool->nextpool) {   //
            /*
             * There is a used pool for this size class.
             * Pick up the head block of its free list.
             */
            ++pool->ref.count;
            bp = pool->freeblock; // 指標指向空閒block起始位置
            assert(bp != NULL);

            // 程式碼-1
            // 調整 pool->freeblock (假設A節點)指向連結串列下一個, 即bp首位元組指向的下一個節點(假設B節點) , 如果此時!= NULL
            // 表示 A節點可用, 直接返回
            if ((pool->freeblock = *(block **)bp) != NULL) {
                UNLOCK();
                return (void *)bp;
            }

            // 程式碼-2
            /*
             * Reached the end of the free list, try to extend it.
             */
            // 有足夠的空間, 分配一個, pool->freeblock 指向後移
            if (pool->nextoffset <= pool->maxnextoffset) {
                /* There is room for another block. */
                // 變更位置資訊
                pool->freeblock = (block*)pool +
                                  pool->nextoffset;
                pool->nextoffset += INDEX2SIZE(size);


                *(block **)(pool->freeblock) = NULL; // 注意, 指向NULL
                UNLOCK();

                // 返回bp
                return (void *)bp;
            }

            // 程式碼-3
            /* Pool is full, unlink from used pools. */  // 滿了, 需要從下一個pool獲取
            next = pool->nextpool;
            pool = pool->prevpool;
            next->prevpool = pool;
            pool->nextpool = next;
            UNLOCK();
            return (void *)bp;
        }

pool進行block分配 -1

記憶體塊尚未分配完, 且此時不存在回收的block, 全新進來的時候, 分配第一塊block

(pool->freeblock = *(block **)bp) == NULL

當進入程式碼邏輯2時,表示有空閒的block, 程式碼2的執行流程圖如下

image.png

pool進行block分配 - 2 回收了某幾個block

回收涉及的程式碼:

void
PyObject_Free(void *p)
{
    poolp pool;
    block *lastfree;
    poolp next, prev;
    uint size;

    pool = POOL_ADDR(p);
    if (Py_ADDRESS_IN_RANGE(p, pool)) {
        /* We allocated this address. */
        LOCK();
        /* Link p to the start of the pool's freeblock list.  Since
         * the pool had at least the p block outstanding, the pool
         * wasn't empty (so it's already in a usedpools[] list, or
         * was full and is in no list -- it's not in the freeblocks
         * list in any case).
         */
        assert(pool->ref.count > 0);            /* else it was empty */
        // p被釋放, p的第一個位元組值被設定為當前freeblock的值
        *(block **)p = lastfree = pool->freeblock;
        // freeblock被更新為指向p的首地址
        pool->freeblock = (block *)p;

        // 相當於往list中頭插入了一個節點

     ...
    }
}

每釋放一個block,該blcok就會變成pool->freeblock的頭結點, 假設已經連續分配了5塊, 第1塊和第4塊被釋放,此時的記憶體圖示如下:

image.png

此時再一個block分配呼叫進來, 執行分配, 進入的邏輯是程式碼-1

bp = pool->freeblock; // 指標指向空閒block起始位置
// 程式碼-1
// 調整 pool->freeblock (假設A節點)指向連結串列下一個, 即bp首位元組指向的下一個節點(假設B節點) , 如果此時!= NULL
// 表示 A節點可用, 直接返回
if ((pool->freeblock = *(block **)bp) != NULL) {
    UNLOCK();
    return (void *)bp;
}

image.png

pool進行block分配 - 3 pool用完了

pool中記憶體空間都用完了, 進入程式碼-3

/* Pool is full, unlink from used pools. */  // 滿了, 需要從下一個pool獲取
next = pool->nextpool;
pool = pool->prevpool;
next->prevpool = pool;
pool->nextpool = next;
UNLOCK();
return (void *)bp;

Python 記憶體分配策略之-arena

arena: 多個pool聚合的結果, 可放置64個pool

#define ARENA_SIZE              (256 << 10)     /* 256KB */

arena結構

一個完整的arena = arena_object + pool集合

/* Record keeping for arenas. */
struct arena_object {
    /* The address of the arena, as returned by malloc.  Note that 0
     * will never be returned by a successful malloc, and is used
     * here to mark an arena_object that doesn't correspond to an
     * allocated arena.
     */
    uintptr_t address;

    /* Pool-aligned pointer to the next pool to be carved off. */
    block* pool_address;

    /* The number of available pools in the arena:  free pools + never-
     * allocated pools.
     */
    uint nfreepools;

    /* The total number of pools in the arena, whether or not available. */
    uint ntotalpools;

    /* Singly-linked list of available pools. */
    struct pool_header* freepools;

    /* Whenever this arena_object is not associated with an allocated
     * arena, the nextarena member is used to link all unassociated
     * arena_objects in the singly-linked `unused_arena_objects` list.
     * The prevarena member is unused in this case.
     *
     * When this arena_object is associated with an allocated arena
     * with at least one available pool, both members are used in the
     * doubly-linked `usable_arenas` list, which is maintained in
     * increasing order of `nfreepools` values.
     *
     * Else this arena_object is associated with an allocated arena
     * all of whose pools are in use.  `nextarena` and `prevarena`
     * are both meaningless in this case.
     */
    struct arena_object* nextarena;
    struct arena_object* prevarena;
};
arena_object的作用
1. 與其他arena連線, 組成雙向連結串列
2. 維護arena中可用的pool, 單連結串列
  • pool_header和管理的blocks記憶體是一塊連續的記憶體 => pool_header被申請時,其管理的的block集合的記憶體一併被申請 uint maxnextoffset; /* largest valid nextoffset */
  • arena_object 和其管理的記憶體是分離的 => arena_object被申請時,其管理的pool集合的記憶體沒有被申請,而是在某一時刻建立關係的

image.png

arena的兩種狀態

/* The head of the singly-linked, NULL-terminated list of available
 * arena_objects.
 */
// 單連結串列
static struct arena_object* unused_arena_objects = NULL;

/* The head of the doubly-linked, NULL-terminated at each end, list of
 * arena_objects associated with arenas that have pools available.
 */
// 雙向連結串列
static struct arena_object* usable_arenas = NULL;

arena 初始化

* Allocate a new arena.  If we run out of memory, return NULL.  Else
 * allocate a new arena, and return the address of an arena_object
 * describing the new arena.  It's expected that the caller will set
 * `usable_arenas` to the return value.
 */
static struct arena_object*
new_arena(void)
{
    struct arena_object* arenaobj;
    uint excess;        /* number of bytes above pool alignment */
    void *address;
    static int debug_stats = -1;

    if (debug_stats == -1) {
        const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
        debug_stats = (opt != NULL && *opt != '\0');
    }
    if (debug_stats)
        _PyObject_DebugMallocStats(stderr);

    // 判斷是否需要擴充"未使用"的arena_object列表
    if (unused_arena_objects == NULL) {
        uint i;
        uint numarenas;
        size_t nbytes;

        /* Double the number of arena objects on each allocation.
         * Note that it's possible for `numarenas` to overflow.
         */
        // 確定需要申請的個數, 首次初始化, 16, 之後每次翻倍
        numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
        if (numarenas <= maxarenas)
            return NULL;                /* overflow */
#if SIZEOF_SIZE_T <= SIZEOF_INT
        if (numarenas > SIZE_MAX / sizeof(*arenas))
            return NULL;                /* overflow */
#endif
        nbytes = numarenas * sizeof(*arenas);
        // 申請記憶體
        arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
        if (arenaobj == NULL)
            return NULL;
        arenas = arenaobj;

        /* We might need to fix pointers that were copied.  However,
         * new_arena only gets called when all the pages in the
         * previous arenas are full.  Thus, there are *no* pointers
         * into the old array. Thus, we don't have to worry about
         * invalid pointers.  Just to be sure, some asserts:
         */
        assert(usable_arenas == NULL);
        assert(unused_arena_objects == NULL);

        /* Put the new arenas on the unused_arena_objects list. */
        for (i = maxarenas; i < numarenas; ++i) {
            arenas[i].address = 0;              /* mark as unassociated */
            // 新申請的一律為0, 標識著這個arena處於"未使用"
            arenas[i].nextarena = i < numarenas - 1 ?
                                   &arenas[i+1] : NULL;
        }

         // 將其放入unused_arena_objects連結串列中
        // unused_arena_objects 為新分配記憶體空間的開頭
        /* Update globals. */
        unused_arena_objects = &arenas[maxarenas];
        maxarenas = numarenas;
    }

    /* Take the next available arena object off the head of the list. */
    assert(unused_arena_objects != NULL);
    // 從unused_arena_objects中, 獲取一個未使用的object
    arenaobj = unused_arena_objects;
    unused_arena_objects = arenaobj->nextarena;  // 更新連結串列
    assert(arenaobj->address == 0);
    // 申請記憶體, 256KB, 記憶體地址賦值給arena的address. 這塊記憶體可用
    address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
    if (address == NULL) {
        /* The allocation failed: return NULL after putting the
         * arenaobj back.
         */
        arenaobj->nextarena = unused_arena_objects;
        unused_arena_objects = arenaobj;
        return NULL;
    }
    arenaobj->address = (uintptr_t)address;

    ++narenas_currently_allocated;
    ++ntimes_arena_allocated;
    if (narenas_currently_allocated > narenas_highwater)
        narenas_highwater = narenas_currently_allocated;
    arenaobj->freepools = NULL;
    /* pool_address <- first pool-aligned address in the arena
       nfreepools <- number of whole pools that fit after alignment */
    arenaobj->pool_address = (block*)arenaobj->address;
    arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
    // 將pool的起始地址調整為系統頁的邊界
    // 申請到 256KB, 放棄了一些記憶體, 而將可使用的記憶體邊界pool_address調整到了與系統頁對齊
    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
    if (excess != 0) {
        --arenaobj->nfreepools;
        arenaobj->pool_address += POOL_SIZE - excess;
    }
    arenaobj->ntotalpools = arenaobj->nfreepools;

    return arenaobj;
}

image.png

從arenas取一個arena進行初始化

image.png

arena分配

new一個全新的arena

static void*
pymalloc_alloc(void *ctx, size_t nbytes)
 {
            // 剛開始沒有可用的arena
            if (usable_arenas == NULL) {
              // new一個, 作為雙向連結串列的表頭
              usable_arenas = new_arena();
              if (usable_arenas == NULL) {
                  UNLOCK();
                  goto redirect;
              }

              usable_arenas->nextarena =
                  usable_arenas->prevarena = NULL;

           }

          .......

          // 從arena中獲取一個pool
          pool = (poolp)usable_arenas->pool_address;
          assert((block*)pool <= (block*)usable_arenas->address +
                                 ARENA_SIZE - POOL_SIZE);
          pool->arenaindex = usable_arenas - arenas;
          assert(&arenas[pool->arenaindex] == usable_arenas);
          pool->szidx = DUMMY_SIZE_IDX;

          // 更新 pool_address 向下一個節點
          usable_arenas->pool_address += POOL_SIZE;
          // 可用節點數量-1
          --usable_arenas->nfreepools;

}

從全新的arena中獲取一個pool

image.png

假設arena是舊的, 怎麼分配的pool, 跟pool分配block原理一樣,使用單連結串列記錄freepools

pool = usable_arenas->freepools;
if (pool != NULL) {

當arena中一整塊pool被釋放的時候

/* Free a memory block allocated by pymalloc_alloc().
   Return 1 if it was freed.
   Return 0 if the block was not allocated by pymalloc_alloc(). */
static int
pymalloc_free(void *ctx, void *p) {
    struct arena_object* ao;
    uint nf;  /* ao->nfreepools */

    /* Link the pool to freepools.  This is a singly-linked
               * list, and pool->prevpool isn't used there.
              */
    ao = &arenas[pool->arenaindex];
    pool->nextpool = ao->freepools;
    ao->freepools = pool;
    nf = ++ao->nfreepools;
}

在pool整塊被釋放的時候, 會將pool加入到arena->freepools作為單連結串列的表頭, 然後, 在從非全新arena中分配pool時, 優先從arena->freepools裡面取, 如果取不到, 再從arena記憶體塊裡面獲取

image.png

注: 上圖中nfreepools = n - 2

當arena1用完了,獲取arena1指向的下一個節點arena2

static void*
pymalloc_alloc(void *ctx, size_t nbytes)
{


          // 當發現用完了最後一個pool!!!!!!!!!!!
          // nfreepools = 0
          if (usable_arenas->nfreepools == 0) {
              assert(usable_arenas->nextarena == NULL ||
                     usable_arenas->nextarena->prevarena ==
                     usable_arenas);
              /* Unlink the arena:  it is completely allocated. */

              // 找到下一個節點!
              usable_arenas = usable_arenas->nextarena;
              // 右下一個
              if (usable_arenas != NULL) {
                  usable_arenas->prevarena = NULL; // 更新下一個節點的prevarens
                  assert(usable_arenas->address != 0);
              }
              // 沒有下一個, 此時 usable_arenas = NULL, 下次進行記憶體分配的時候, 就會從arenas陣列中取一個

          }

  }

注意: 這裡有個邏輯, 就是每分配一個pool, 就檢查是不是用到了最後一個, 如果是, 需要變更usable_arenas到下一個可用的節點, 如果沒有可用的, 那麼下次進行記憶體分配的時候, 會判定從arenas陣列中取一個

arena回收

記憶體分配和回收最小單位是block, 當一個block被回收的時候, 可能觸發pool被回收, pool被回收, 將會觸發arena的回收機制

    1. arena中所有pool都是閒置的(empty), 將arena記憶體釋放, 返回給作業系統
    1. 如果arena中之前所有的pool都是佔用的(used), 現在釋放了一個pool(empty), 需要將 arena加入到usable_arenas, 會加入連結串列表頭
    1. 如果arena中empty的pool個數n, 則從useable_arenas開始尋找可以插入的位置. 將arena插入. (useable_arenas是一個有序連結串列, 按empty pool的個數, 保證empty pool數量越多, 被使用的機率越小, 最終被整體釋放的機會越大)

記憶體分配的步驟

關注點:如何尋找到一塊可用的nbytes的blcok記憶體?

pool = usedpools[size + size]

if pool:

​ pool 沒滿,取一個blcok返回

​ pool 滿了,從下一個pool取一個blcok返回

else:

​ 獲取arena, 從裡面初始化一個pool, 拿到第一個blcok返回

進行記憶體分配和銷燬, 所有操作都是在pool上進行的

問題: pool中所有block的size一樣, 但是在arena中, 每個pool的size都可能不一樣, 那麼最終這些pool是怎麼維護的? 怎麼根據大小找到需要的block所在的pool? => usedpools

pool在記憶體池中的三種狀態

  1. used狀態:pool中至少有一個block已經被使用,並且至少有一個block未被使用,這種狀態的pool受控於Python內部維護的usedpool陣列
  2. full狀態:pool中所有的block都已經被使用,這種狀態的pool在arena中, 但不在arena的freepools連結串列中,處於full的pool各自獨立, 不會被連結串列維護起來
  3. empty狀態:pool中所有的blcok都未被使用,處於這個狀態的pool的集合通過其pool_header中的nextpool構成一個連結串列,連結串列的表頭示arena_object中的freepools

image.png

Python內部維護的usedpools陣列是一個非常巧妙的實現,維護著所有的處於used狀態的pool,當申請記憶體時,python就會通過usedpools尋找到一個可用的pool(處於used狀態),從中分配一個block。因此我們想,一定有一個usedpools相關聯的機制,完成從申請的記憶體的大小到size class index之間的轉換,否則python就無法找到最合適的pool了。這種機制和usedpools的結構有著密切的關係,我們看一下它的結構

usedpools

usedpools陣列: 維護著所有處於used狀態的pool, 當申請記憶體的時候, 會通過usedpools尋找到一塊可用的(處於used狀態的)pool, 從中分配一個block。

//obmalloc.c
typedef uint8_t block;
#define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x)   PTA(x), PTA(x)

//在我當前的機器就是512/8=64個,對應的size class index就是從0到63
#define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)

static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
#if NB_SMALL_SIZE_CLASSES > 8
    , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
#if NB_SMALL_SIZE_CLASSES > 16
    , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
#if NB_SMALL_SIZE_CLASSES > 24
    , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
#if NB_SMALL_SIZE_CLASSES > 32
    , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
#if NB_SMALL_SIZE_CLASSES > 40
    , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
#if NB_SMALL_SIZE_CLASSES > 48
    , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
#if NB_SMALL_SIZE_CLASSES > 56
    , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES >  8 */
};

image.png

如果正在申請28位元組, python首先會獲取(size class index) size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT 顯然這裡size=3, 那麼在usedpools中,尋找第3+3=6個元素,發現usedpools[6]的值是指向usedpools[4]的地址

//obmalloc.c
/* Pool for small blocks. */
struct pool_header {
    union { block *_padding;
            uint count; } ref;          /* 當然pool裡面的block數量    */
    block *freeblock;                   /* 一個連結串列,指向下一個可用的block   */
    struct pool_header *nextpool;       /* 指向下一個pool  */
    struct pool_header *prevpool;       /* 指向上一個pool       ""        */
    uint arenaindex;                    /* 在area裡面的索引 */
    uint szidx;                         /* block的大小(固定值?後面說)     */
    uint nextoffset;                    /* 下一個可用block的記憶體偏移量         */
    uint maxnextoffset;                 /* 最後一個block距離開始位置的距離     */
};

顯然是從usedpools[6](即usedpools+4)開始向後偏移8個位元組(一個ref的大小加上一個freeblock的大小)後的記憶體,正好是usedpools[6]的地址(即usedpools+6),這是python內部的trick

當我們要申請一個size class為32位元組的pool,想要將其放入這個usedpools中時,要怎麼做呢?從上面的描述我們知道,只需要進行usedpools[i+i] -> nextpool = pool即可,其中i為size class index,對應於32位元組,這個i為3.當下次需要訪問size class 為32位元組(size class index為3)的pool時,只需要簡單地訪問usedpools[3+3]就可以得到了。python正是使用這個usedpools快速地從眾多的pool中快速地尋找到一個最適合當前記憶體需求的pool,從中分配一塊block。

//obmalloc.c
static int
pymalloc_alloc(void *ctx, void **ptr_p, size_t nbytes)
{
    block *bp;
    poolp pool;
    poolp next;
    uint size;
    ...
    LOCK();
    //獲得size class index
    size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
    //直接通過usedpools[size+size],這裡的size不就是我們上面說的i嗎?
    pool = usedpools[size + size];
    //如果usedpools中有可用的pool
    if (pool != pool->nextpool) {
        ... //有可用pool
    }
    ... //無可用pool,嘗試獲取empty狀態的pool
}  

記憶體池全域性結構

image.png

參考:

pyhton原始碼閱讀-記憶體管理機制

python原始碼解析第17章-python記憶體管理與垃圾回收

相關文章