使用elasticsearch搭建自己的搜尋系統
?
?原文地址為https://www.cnblogs.com/haixiang/p/12451703.html,轉載請註明出處!
什麼是elasticsearch #
Elasticsearch 是一個開源的高度可擴充套件的全文搜尋和分析引擎,擁有查詢近實時的超強效能。
大名鼎鼎的Lucene 搜尋引擎被廣泛用於搜尋領域,但是操作複雜繁瑣,總是讓開發者敬而遠之。而 Elasticsearch將 Lucene 作為其核心來實現所有索引和搜尋的功能,透過簡單的 RESTful 語法來隱藏掉 Lucene 的複雜性,從而讓全文搜尋變得簡單
ES在Lucene基礎上,提供了一些分散式的實現:叢集,分片,複製等。
搜尋為什麼不用MySQL而用es #
我們本文案例是一個迷你商品搜尋系統,為什麼不考慮使用MySQL來實現搜尋功能呢?原因如下:
- MySQL預設使用innodb引擎,底層採用b+樹的方式來實現,而Es底層使用倒排索引的方式實現,使用倒排索引支援各種維度的分詞,可以掌控不同粒度的搜尋需求。(MYSQL8版本也支援了全文檢索,使用倒排索引實現,有興趣可以去看看兩者的差別)
- 如果使用MySQL的
%key%
的模糊匹配來與es的搜尋進行比較,在8萬資料量時他們的耗時已經達到40:1左右,毫無疑問在速度方面es完勝。
es在大廠中的應用情況 #
- es運用最廣泛的是elk組合來對日誌進行搜尋分析
- 58安全部門、京東訂單中心幾乎全採用es來完成相關資訊的儲存與檢索
- es在tob的專案中也用於各種檢索與分析
- 在c端產品中,企業通常自己基於Lucene封裝自己的搜尋系統,為了適配公司營銷戰略、推薦系統等會有更多定製化的搜尋需求
es客戶端選型 #
spring-boot-starter-data-elasticsearch #
我相信你看到的網上各類公開課影片或者小專案均推薦使用這款springboot整合過的es客戶端,但是我們要say no!
此圖是引入的最新版本的依賴,我們可以看到它所使用的es-high-client也為6.8.7,而es7.x版本都已經更新很久了,這裡許多新特性都無法使用,所以版本滯後是他最大的問題。而且它的底層也是highclient,我們操作highclient可以更靈活。我呆過的兩個公司均未採用此客戶端。
elasticsearch-rest-high-level-client #
這是官方推薦的客戶端,支援最新的es,其實使用起來也很便利,因為是官方推薦所以在特性的操作上肯定優於前者。而且該客戶端與TransportClient不同,不存在併發瓶頸的問題,官方首推,必為精品!
搭建自己的迷你搜尋系統 #
引入es相關依賴,除此之外需引入springboot-web依賴、jackson依賴以及lombok依賴等。
Copy <properties> <es.version>7.3.2</es.version> </properties> <!-- high client--> <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>${es.version}</version> <exclusions> <exclusion> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> </exclusion> <exclusion> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>${es.version}</version> </dependency> <!--rest low client high client以來低版本client所以需要引入--> <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>${es.version}</version> </dependency>
es配置檔案es-config.properties
Copyes.host=localhost es.port=9200 es.token=es-token es.charset=UTF-8 es.scheme=http es.client.connectTimeOut=5000 es.client.socketTimeout=15000
封裝RestHighLevelClient
Copy@Configuration@PropertySource("classpath:es-config.properties")public class RestHighLevelClientConfig { @Value("${es.host}") private String host; @Value("${es.port}") private int port; @Value("${es.scheme}") private String scheme; @Value("${es.token}") private String token; @Value("${es.charset}") private String charSet; @Value("${es.client.connectTimeOut}") private int connectTimeOut; @Value("${es.client.socketTimeout}") private int socketTimeout; @Bean public RestClientBuilder restClientBuilder() { RestClientBuilder restClientBuilder = RestClient.builder( new HttpHost(host, port, scheme) ); Header[] defaultHeaders = new Header[]{ new BasicHeader("Accept", "*/*"), new BasicHeader("Charset", charSet), //設定token 是為了安全 閘道器可以驗證token來決定是否發起請求 我們這裡只做象徵性配置 new BasicHeader("E_TOKEN", token) }; restClientBuilder.setDefaultHeaders(defaultHeaders); restClientBuilder.setFailureListener(new RestClient.FailureListener(){ @Override public void onFailure(Node node) { System.out.println("監聽某個es節點失敗"); } }); restClientBuilder.setRequestConfigCallback(builder -> builder.setConnectTimeout(connectTimeOut).setSocketTimeout(socketTimeout)); return restClientBuilder; } @Bean public RestHighLevelClient restHighLevelClient(RestClientBuilder restClientBuilder) { return new RestHighLevelClient(restClientBuilder); } }
封裝es常用操作
Copy@Servicepublic class RestHighLevelClientService { @Autowired private RestHighLevelClient client; @Autowired private ObjectMapper mapper; /** * 建立索引 * @param indexName * @param settings * @param mapping * @return * @throws IOException */ public CreateIndexResponse createIndex(String indexName, String settings, String mapping) throws IOException { CreateIndexRequest request = new CreateIndexRequest(indexName); if (null != settings && !"".equals(settings)) { request.settings(settings, XContentType.JSON); } if (null != mapping && !"".equals(mapping)) { request.mapping(mapping, XContentType.JSON); } return client.indices().create(request, RequestOptions.DEFAULT); } /** * 判斷 index 是否存在 */ public boolean indexExists(String indexName) throws IOException { GetIndexRequest request = new GetIndexRequest(indexName); return client.indices().exists(request, RequestOptions.DEFAULT); } /** * 搜尋 */ public SearchResponse search(String field, String key, String rangeField, String from, String to,String termField, String termVal, String ... indexNames) throws IOException{ SearchRequest request = new SearchRequest(indexNames); SearchSourceBuilder builder = new SearchSourceBuilder(); BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); boolQueryBuilder.must(new MatchQueryBuilder(field, key)).must(new RangeQueryBuilder(rangeField).from(from).to(to)).must(new TermQueryBuilder(termField, termVal)); builder.query(boolQueryBuilder); request.source(builder); log.info("[搜尋語句為:{}]",request.source().toString()); return client.search(request, RequestOptions.DEFAULT); } /** * 批次匯入 * @param indexName * @param isAutoId 使用自動id 還是使用傳入物件的id * @param source * @return * @throws IOException */ public BulkResponse importAll(String indexName, boolean isAutoId, String source) throws IOException{ if (0 == source.length()){ //todo 丟擲異常 匯入資料為空 } BulkRequest request = new BulkRequest(); JsonNode jsonNode = mapper.readTree(source); if (jsonNode.isArray()) { for (JsonNode node : jsonNode) { if (isAutoId) { request.add(new IndexRequest(indexName).source(node.asText(), XContentType.JSON)); } else { request.add(new IndexRequest(indexName) .id(node.get("id").asText()) .source(node.asText(), XContentType.JSON)); } } } return client.bulk(request, RequestOptions.DEFAULT); }
建立索引,這裡的settings是設定索引是否設定複製節點、設定分片個數,mappings就和資料庫中的表結構一樣,用來指定各個欄位的型別,同時也可以設定欄位是否分詞(我們這裡使用ik中文分詞器)、採用什麼分詞方式。
Copy @Test public void createIdx() throws IOException { String settings = "" + " {\n" + " \"number_of_shards\" : \"2\",\n" + " \"number_of_replicas\" : \"0\"\n" + " }"; String mappings = "" + "{\n" + " \"properties\": {\n" + " \"itemId\" : {\n" + " \"type\": \"keyword\",\n" + " \"ignore_above\": 64\n" + " },\n" + " \"urlId\" : {\n" + " \"type\": \"keyword\",\n" + " \"ignore_above\": 64\n" + " },\n" + " \"sellAddress\" : {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\", \n" + " \"search_analyzer\": \"ik_smart\",\n" + " \"fields\": {\n" + " \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" + " }\n" + " },\n" + " \"courierFee\" : {\n" + " \"type\": \"text\n" + " },\n" + " \"promotions\" : {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\", \n" + " \"search_analyzer\": \"ik_smart\",\n" + " \"fields\": {\n" + " \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" + " }\n" + " },\n" + " \"originalPrice\" : {\n" + " \"type\": \"keyword\",\n" + " \"ignore_above\": 64\n" + " },\n" + " \"startTime\" : {\n" + " \"type\": \"date\",\n" + " \"format\": \"yyyy-MM-dd HH:mm:ss\"\n" + " },\n" + " \"endTime\" : {\n" + " \"type\": \"date\",\n" + " \"format\": \"yyyy-MM-dd HH:mm:ss\"\n" + " },\n" + " \"title\" : {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\", \n" + " \"search_analyzer\": \"ik_smart\",\n" + " \"fields\": {\n" + " \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" + " }\n" + " },\n" + " \"serviceGuarantee\" : {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\", \n" + " \"search_analyzer\": \"ik_smart\",\n" + " \"fields\": {\n" + " \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" + " }\n" + " },\n" + " \"venue\" : {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\", \n" + " \"search_analyzer\": \"ik_smart\",\n" + " \"fields\": {\n" + " \"keyword\" : {\"ignore_above\" : 256, \"type\" : \"keyword\"}\n" + " }\n" + " },\n" + " \"currentPrice\" : {\n" + " \"type\": \"keyword\",\n" + " \"ignore_above\": 64\n" + " }\n" + " }\n" + "}"; clientService.createIndex("idx_item", settings, mappings); }
分詞技巧:
- 索引時最小分詞,搜尋時最大分詞,例如"Java知音"索引時分詞包含Java、知音、音、知等,最小粒度分詞可以讓我們匹配更多的檢索需求,但是我們搜尋時應該設定最大分詞,用“Java”和“知音”去匹配索引庫,得到的結果更貼近我們的目的,
- 對分詞欄位同時也設定keyword,便於後續排查錯誤時可以精確匹配搜尋,快速定位。
我們向es匯入十萬條淘寶雙11活動資料作為我們的樣本資料,資料結構如下所示
Copy{ "_id": "\u0026skuId=3216546934499", "賣家地址": "上海", "快遞費": "運費: 0.00元", "優惠活動": "滿199減10,滿299減30,滿499減60,可跨店", "商品ID": "538528948719", "原價": "2290.00", "活動開始時間": "2016-11-11 00:00:00", "活動結束時間": "2016-11-11 23:59:59", "標題": "【天貓海外直營】 ReFa CARAT RAY 黎琺 雙球滾輪波光美容儀", "服務保障": "正品保證;贈運費險;極速退款;七天退換", "會場": "進口尖貨", "現價": "1950.00"}
呼叫上面封裝的批次匯入方法進行匯入
Copy @Test public void importAll() throws IOException { clientService.importAll("idx_item", true, itemService.getItemsJson()); }
我們呼叫封裝的搜尋方法進行搜尋,搜尋產地為武漢、價格在11-149之間的相關酒產品,這與我們淘寶中設定篩選條件搜尋商品操作一致。
Copy @Test public void search() throws IOException { SearchResponse search = clientService.search("title", "酒", "currentPrice", "11", "149", "sellAddress", "武漢"); SearchHits hits = search.getHits(); SearchHit[] hits1 = hits.getHits(); for (SearchHit documentFields : hits1) { System.out.println( documentFields.getSourceAsString()); } }
我們得到以下搜尋結果,其中_score為某一項的得分,商品就是按照它來排序。
Copy { "_index": "idx_item", "_type": "_doc", "_id": "Rw3G7HEBDGgXwwHKFPCb", "_score": 10.995819, "_source": { "itemId": "525033055044", "urlId": "湖北武漢", "courierFee": "快遞: 0.00", "promotions": "滿199減10,滿299減30,滿499減60,可跨店", "originalPrice": "3768.00", "startTime": "2016-11-01 00:00:00", "endTime": "2016-11-11 23:59:59", "title": "酒嗨酒 西班牙原瓶原裝進口紅酒蒙德干紅葡萄酒6只裝整箱送酒具", "serviceGuarantee": "破損包退;正品保證;公益寶貝;不支援7天退換;極速退款", "venue": "食品主會場", "currentPrice": "151.00" } }
擴充套件性思考 #
- 商品搜尋權重擴充套件,我們可以利用多種收費方式智慧為不同店家提供增加權重,增加曝光度適應自身的營銷策略。同時我們經常發現淘寶搜尋前列的商品許多為我們之前檢視過的商品,這是透過記錄使用者行為,跑模型等方式智慧為這些商品增加權重。
- 分詞擴充套件,也許因為某些商品的特殊性,我們可以自定義擴充套件分詞字典,更精準、人性化的搜尋。
- 高亮功能,es提供highlight高亮功能,我們在淘寶上看到的商品展示中對搜尋關鍵字高亮,就是透過這種方式來實現。 高亮使用方式
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69973775/viewspace-2691177/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 十分鐘學會使用 Elasticsearch 優雅搭建自己的搜尋系統(附原始碼)Elasticsearch原始碼
- 用elasticsearch和nuxtjs搭建bt搜尋引擎ElasticsearchUXJS
- CentOS 7.4 下搭建 Elasticsearch 6.3 搜尋群集CentOSElasticsearch
- 三步搭建自己的Google搜尋引擎Go
- Laravel 使用 Elasticsearch 全域性搜尋LaravelElasticsearch
- elasticsearch 搜尋引擎工具的高階使用Elasticsearch
- Elasticsearch 向量搜尋Elasticsearch
- Elasticsearch常用搜尋Elasticsearch
- elasticsearch搜尋商品Elasticsearch
- Elasticsearch——全文搜尋Elasticsearch
- Elasticsearch(ES)的高階搜尋(DSL搜尋)(上篇)Elasticsearch
- Elasticsearch(ES)的高階搜尋(DSL搜尋)(下篇)Elasticsearch
- Elasticsearch 的配置與使用,為了全文搜尋Elasticsearch
- 像使用 Laravel Query 一樣的搜尋 ElasticsearchLaravelElasticsearch
- Nebula 基於 ElasticSearch 的全文搜尋引擎的文字搜尋Elasticsearch
- 使用 Laravel Scout + ElasticSearch 實現全文搜尋LaravelElasticsearch
- 在 Spring Boot 中使用搜尋引擎 ElasticsearchSpring BootElasticsearch
- Thinkphp 3.2【onethink 1.0】搭建 影視搜尋系統PHP
- ElasticSearch全文搜尋引擎Elasticsearch
- elasticsearch之拼音搜尋Elasticsearch
- Elasticsearch 為了搜尋Elasticsearch
- Elasticsearch線上搜尋引擎讀寫核心原理深度認知-搜尋系統線上實戰Elasticsearch
- 認識搜尋引擎 ElasticsearchElasticsearch
- elasticsearch(五)---分散式搜尋Elasticsearch分散式
- ElasticSearch 簡單的 搜尋 聚合 分析Elasticsearch
- (1)分散式搜尋ElasticSearch認識ElasticSearch分散式Elasticsearch
- 使用solr搭建搜尋伺服器Solr伺服器
- 直播系統搭建,可自動模糊匹配的搜尋下拉框
- Elasticsearch:使用同義詞 synonyms 來提高搜尋效率Elasticsearch
- Laravel5.5 使用 Elasticsearch 做引擎,scout 全文搜尋LaravelElasticsearch
- 所見即搜,3分鐘教你搭建一個服裝搜尋系統!
- 搜尋引擎ElasticSearch18_ElasticSearch簡介1Elasticsearch
- vue.js搭建使用者管理系統練手(八)----實現搜尋功能Vue.js
- Laravel + Elasticsearch 實現中文搜尋LaravelElasticsearch
- 【elasticsearch】搜尋過程詳解Elasticsearch
- Elasticsearch搜尋資料彙總Elasticsearch
- Elasticsearch 實現簡單搜尋Elasticsearch
- 直播系統程式碼,常用搜尋中搜尋歷史,搜尋推薦功能