資料依賴性
如果兩個操作訪問同一個變數,且這兩個操作中有一個為寫操作,此時這兩個操作之間就存在資料依賴性。資料依賴分下列三種型別:
名稱 | 程式碼示例 | 說明 |
寫後讀 | a = 1;b = a; | 寫一個變數之後,再讀這個位置。 |
寫後寫 | a = 1;a = 2; | 寫一個變數之後,再寫這個變數。 |
讀後寫 | a = b;b = 1; | 讀一個變數之後,再寫這個變數。 |
上面三種情況,只要重排序兩個操作的執行順序,程式的執行結果將會被改變。
前面提到過,編譯器和處理器可能會對操作做重排序。編譯器和處理器在重排序時,會遵守資料依賴性,編譯器和處理器不會改變存在資料依賴關係的兩個操作的執行順序。
注意,這裡所說的資料依賴性僅針對單個處理器中執行的指令序列和單個執行緒中執行的操作,不同處理器之間和不同執行緒之間的資料依賴性不被編譯器和處理器考慮。
as-if-serial語義
as-if-serial語義的意思指:不管怎麼重排序(編譯器和處理器為了提高並行度),(單執行緒)程式的執行結果不能被改變。編譯器,runtime 和處理器都必須遵守as-if-serial語義。
為了遵守as-if-serial語義,編譯器和處理器不會對存在資料依賴關係的操作做重排序,因為這種重排序會改變執行結果。但是,如果操作之間不存在資料依賴關係,這些操作可能被編譯器和處理器重排序。為了具體說明,請看下面計算圓面積的程式碼示例:
double pi = 3.14; //A
double r = 1.0; //B
double area = pi * r * r; //C
複製程式碼
上面三個操作的資料依賴關係如下圖所示:
如上圖所示,A和C之間存在資料依賴關係,同時B和C之間也存在資料依賴關係。因此在最終執行的指令序列中,C不能被重排序到A和B的前面(C排到A和B的前面,程式的結果將會被改變)。但A和B之間沒有資料依賴關係,編譯器和處理器可以重排序A和B之間的執行順序。下圖是該程式的兩種執行順序:
as-if-serial語義把單執行緒程式保護了起來,遵守as-if-serial語義的編譯器,runtime 和處理器共同為編寫單執行緒程式的程式設計師建立了一個幻覺:單執行緒程式是按程式的順序來執行的。as-if-serial語義使單執行緒程式設計師無需擔心重排序會干擾他們,也無需擔心記憶體可見性問題。
程式順序規則
根據happens- before的程式順序規則,上面計算圓的面積的示例程式碼存在三個happens- before關係:
- A happens- before B;
- B happens- before C;
- A happens- before C;
這裡的第3個happens- before關係,是根據happens- before的傳遞性推匯出來的。
這裡A happens- before B,但實際執行時B卻可以排在A之前執行(看上面的重排序後的執行順序)。在第一章提到過,如果A happens- before B,JMM並不要求A一定要在B之前執行。JMM僅僅要求前一個操作(執行的結果)對後一個操作可見,且前一個操作按順序排在第二個操作之前。這裡操作A的執行結果不需要對操作B可見;而且重排序操作A和操作B後的執行結果,與操作A和操作B按happens- before順序執行的結果一致。在這種情況下,JMM會認為這種重排序並不非法(not illegal),JMM允許這種重排序。
在計算機中,軟體技術和硬體技術有一個共同的目標:在不改變程式執行結果的前提下,儘可能的開發並行度。編譯器和處理器遵從這一目標,從happens- before的定義我們可以看出,JMM同樣遵從這一目標。
重排序對多執行緒的影響
現在讓我們來看看,重排序是否會改變多執行緒程式的執行結果。請看下面的示例程式碼:
class ReorderExample {
int a = 0;
boolean flag = false;
public void writer() {
a = 1; //1
flag = true; //2
}
Public void reader() {
if (flag) { //3
int i = a * a; //4
……
}
}
}
複製程式碼
flag變數是個標記,用來標識變數a是否已被寫入。這裡假設有兩個執行緒A和B,A首先執行writer()方法,隨後B執行緒接著執行reader()方法。執行緒B在執行操作4時,能否看到執行緒A在操作1對共享變數a的寫入?
答案是:不一定能看到。
由於操作1和操作2沒有資料依賴關係,編譯器和處理器可以對這兩個操作重排序;同樣,操作3和操作4沒有資料依賴關係,編譯器和處理器也可以對這兩個操作重排序。讓我們先來看看,當操作1和操作2重排序時,可能會產生什麼效果?請看下面的程式執行時序圖:
如上圖所示,操作1和操作2做了重排序。程式執行時,執行緒A首先寫標記變數flag,隨後執行緒B讀這個變數。由於條件判斷為真,執行緒B將讀取變數a。此時,變數a還根本沒有被執行緒A寫入,在這裡多執行緒程式的語義被重排序破壞了!
※注:本文統一用紅色的虛箭線表示錯誤的讀操作,用綠色的虛箭線表示正確的讀操作。
下面再讓我們看看,當操作3和操作4重排序時會產生什麼效果(藉助這個重排序,可以順便說明控制依賴性)。下面是操作3和操作4重排序後,程式的執行時序圖:
在程式中,操作3和操作4存在控制依賴關係。當程式碼中存在控制依賴性時,會影響指令序列執行的並行度。為此,編譯器和處理器會採用猜測(Speculation)執行來克服控制相關性對並行度的影響。以處理器的猜測執行為例,執行執行緒B的處理器可以提前讀取並計算a*a,然後把計算結果臨時儲存到一個名為重排序緩衝(reorder buffer ROB)的硬體快取中。當接下來操作3的條件判斷為真時,就把該計算結果寫入變數i中。
從圖中我們可以看出,猜測執行實質上對操作3和4做了重排序。重排序在這裡破壞了多執行緒程式的語義!
在單執行緒程式中,對存在控制依賴的操作重排序,不會改變執行結果(這也是as-if-serial語義允許對存在控制依賴的操作做重排序的原因);但在多執行緒程式中,對存在控制依賴的操作重排序,可能會改變程式的執行結果。
參考文獻
- Computer Architecture: A Quantitative Approach, 4th Edition
- Concurrent Programming on Windows
- Concurrent Programming in Java™: Design Principles and Pattern
- JSR-133: Java Memory Model and Thread Specification
- JSR 133 (Java Memory Model) FAQ
本站部分文章源於網際網路,本著傳播知識、有益學習和研究的目的進行的轉載,為網友免費提供。如有著作權人或出版方提出異議,本站將立即刪除。如果您對文章轉載有任何疑問請告之我們,以便我們及時糾正。
PS:推薦一個微信公眾號,裡面會分享一些資深架構師錄製的視訊錄影:有Spring,MyBatis,Netty原始碼分析,高併發、高效能、分散式、微服務架構的原理,JVM效能優化這些成為架構師必備的知識體系。還能領取免費的學習資源,目前受益良多