swoole 協程原始碼解讀

zhm1992發表於2019-09-09

我們按照執行流程去逐步分析swoole協程的實現, php程式是這樣的:

<?php
go(function (){
    Co::sleep(1);
    echo "a";
});

echo "c";

go實際上是swoole_coroutine_create的別名:

PHP_FALIAS(go, swoole_coroutine_create, arginfo_swoole_coroutine_create);

首先會執行zif_swoole_coroutine_create去建立協程:

// 真正執行的函式
PHP_FUNCTION(swoole_coroutine_create)
{
    ...
    // 解析引數
    ZEND_PARSE_PARAMETERS_START(1, -1)
        Z_PARAM_FUNC(fci, fci_cache)
        Z_PARAM_VARIADIC('*', fci.params, fci.param_count)
    ZEND_PARSE_PARAMETERS_END_EX(RETURN_FALSE);

    ...
    long cid = PHPCoroutine::create(&fci_cache, fci.param_count, fci.params);
    if (sw_likely(cid > 0))
    {
        RETURN_LONG(cid);
    }
    else
    {
        RETURN_FALSE;
    }
}

long PHPCoroutine::create(zend_fcall_info_cache *fci_cache, uint32_t argc, zval *argv)
{
    ...
    // 儲存匿名函式引數和執行結構
    php_coro_args php_coro_args;
    php_coro_args.fci_cache = fci_cache;
    php_coro_args.argv = argv;
    php_coro_args.argc = argc;
    save_task(get_task()); // 儲存php棧到當前task
    // 建立coroutine
    return Coroutine::create(main_func, (void*) &php_coro_args);
}

php_coro_args是用來儲存回撥函式資訊的結構:

// 儲存go()回撥的結構體
struct php_coro_args
{
    zend_fcall_info_cache *fci_cache; // 匿名函式資訊
    zval *argv; // 引數
    uint32_t argc; // 引數數量
};

php_corutine::get_task()用來獲取當前正在執行的任務, 第一次執行時, 獲取的是初始化好的main_task:

php_coro_task PHPCoroutine::main_task = {0};
// 獲取當前的task, 沒有則是主task
static inline php_coro_task* get_task()
{
    php_coro_task *task = (php_coro_task *) Coroutine::get_current_task();
    return task ? task : &main_task;
}

static inline void* get_current_task()
{
    return sw_likely(current) ? current->get_task() : nullptr;
}

inline void* get_task()
{
    return task;
}

save_task會將當前php棧資訊儲存到當前使用的task上, 當前使用的是main_task, 所以這些資訊會被儲存在main_task上:

void PHPCoroutine::save_task(php_coro_task *task)
{
    save_vm_stack(task); // 儲存php棧
    ...
}

inline void PHPCoroutine::save_vm_stack(php_coro_task *task)
{
    task->bailout = EG(bailout);
    task->vm_stack_top = EG(vm_stack_top); // 當前棧頂
    task->vm_stack_end = EG(vm_stack_end); // 棧底
    task->vm_stack = EG(vm_stack); // 整個棧結構
    task->vm_stack_page_size = EG(vm_stack_page_size); 
    task->error_handling = EG(error_handling);
    task->exception_class = EG(exception_class);
    task->exception = EG(exception);
}

php_coro_task這個結構用來儲存當前任務的php棧:

struct php_coro_task
{
    JMP_BUF *bailout; // 內部異常使用
    zval *vm_stack_top; // 棧頂
    zval *vm_stack_end; // 棧底
    zend_vm_stack vm_stack; // 執行棧
    size_t vm_stack_page_size; 
    zend_execute_data *execute_data;
    zend_error_handling_t error_handling;
    zend_class_entry *exception_class;
    zend_object *exception;
    zend_output_globals *output_ptr;
    /* for array_walk non-reentrancy */
    php_swoole_fci *array_walk_fci;
    swoole::Coroutine *co; // 屬於哪個coroutine
    std::stack<php_swoole_fci *> *defer_tasks;
    long pcid;
    zend_object *context;
    int64_t last_msec;
    zend_bool enable_scheduler;
};

儲存完當前php棧就可以開始建立coroutine了:

static inline long create(coroutine_func_t fn, void* args = nullptr)
{
    return (new Coroutine(fn, args))->run();
}

Coroutine(coroutine_func_t fn, void *private_data) :
            ctx(stack_size, fn, private_data) // 預設stack size 2M
{
    cid = ++last_cid; // 分配協程id
    coroutines[cid] = this; // 當前物件指標儲存在全域性的corutines靜態屬性上
    if (sw_unlikely(count() > peak_num)) // 更新峰值
    {
        peak_num = count();
    }
}

首先, 會建立一個ctx物件, context物件主要用來管理c棧

#define SW_DEFAULT_C_STACK_SIZE          (2 *1024 * 1024)
size_t Coroutine::stack_size = SW_DEFAULT_C_STACK_SIZE;
ctx(stack_size, fn, private_data)

Context::Context(size_t stack_size, coroutine_func_t fn, void* private_data) :
        fn_(fn), stack_size_(stack_size), private_data_(private_data)
{
    end_ = false; // 標記協程是否已經執行完成
    swap_ctx_ = nullptr;

    stack_ = (char*) sw_malloc(stack_size_); // 分配一塊記憶體儲存c棧, 預設2M
    ...
    void* sp = (void*) ((char*) stack_ + stack_size_); // 計算出棧頂地址即最高地址
    ctx_ = make_fcontext(sp, stack_size_, (void (*)(intptr_t))&context_func); // 構建上下文
}

make_fcontext函式是boost.context庫中提供的,由彙編編寫,不同平臺有不同實現,我們這裡使用的是make_x86_64_sysv_elf_gas.S這個檔案:

傳參使用的暫存器依次是rdi、rsi、rdx、rcx、r8、r9

make_fcontext:
    /* first arg of make_fcontext() == top of context-stack */
    /* rax = sp */
    movq  %rdi, %rax

    /* shift address in RAX to lower 16 byte boundary */ 
    /* rax = rax & -16 => rax = rax & (~0x10000 + 1) => rax = rax - rax%16, 其實就是按16對齊*/
    andq  $-16, %rax

    /* reserve space for context-data on context-stack */
    /* size for fc_mxcsr .. RIP + return-address for context-function */
    /* on context-function entry: (RSP -0x8) % 16 == 0 */
    /*lea是“load effective address”的縮寫,
      簡單的說,lea指令可以用來將一個記憶體地址直接賦給目的運算元,
      例如:lea eax,[ebx+8]就是將ebx+8這個值直接賦給eax,而不是把ebx+8處的記憶體地址裡的資料賦給eax。
      而mov指令則恰恰相反,例如:mov eax,[ebx+8]則是把記憶體地址為ebx+8處的資料賦給eax。*/
    /* rax = rax - 0x48, 預留0x48個位元組 */
    leaq  -0x48(%rax), %rax

    /* third arg of make_fcontext() == address of context-function */
    /* context_func函式地址放在rax+0x38處*/
    movq  %rdx, 0x38(%rax)

    /* save MMX control- and status-word */
    stmxcsr  (%rax)
    /* save x87 control-word */
    fnstcw   0x4(%rax)

    /* compute abs address of label finish */
    /* 
    https://sourceware.org/binutils/docs/as/i386_002dMemory.html

    The x86-64 architecture adds an RIP (instruction pointer relative) addressing. 
    This addressing mode is specified by using ‘rip’ as a base register. Only constant offsets are valid. For example:

    AT&T: ‘1234(%rip)’, Intel: ‘[rip + 1234]’
    Points to the address 1234 bytes past the end of the current instruction.

    AT&T: ‘symbol(%rip)’, Intel: ‘[rip + symbol]’
    Points to the symbol in RIP relative way, this is shorter than the default absolute addressing.
    */
    /* rcx = finish */
    leaq  finish(%rip), %rcx
    /* save address of finish as return-address for context-function */
    /* will be entered after context-function returns */
    /* finish函式地址放在rax+0x40處 */
    movq  %rcx, 0x40(%rax)
    /*return rax*/
    ret /* return pointer to context-data */

finish:
    /* exit code is zero */
    xorq  %rdi, %rdi
    /* exit application */
    call  _exit@PLT
    hlt

make_fcontext函式執行完之後, 用來儲存上下文的記憶體佈局是這樣:

/****************************************************************************************
 *  |<- ctx_
    ----------------------------------------------------------------------------------  *
 *  |    0    |    1    |    2    |    3    |    4     |    5    |    6    |    7    |  *
 *  ----------------------------------------------------------------------------------  *
 *  |   0x0   |   0x4   |   0x8   |   0xc   |   0x10   |   0x14  |   0x18  |   0x1c  |  *
 *  ----------------------------------------------------------------------------------  *
 *  | fc_mxcsr|fc_x87_cw|                   |                    |                   |  *
 *  ----------------------------------------------------------------------------------  *
 *  ----------------------------------------------------------------------------------  *
 *  |    8    |    9    |   10    |   11    |    12    |    13   |    14   |    15   |  *
 *  ----------------------------------------------------------------------------------  *
 *  |   0x20  |   0x24  |   0x28  |  0x2c   |   0x30   |   0x34  |   0x38  |   0x3c  |  *
 *  ----------------------------------------------------------------------------------  *
 *  |                   |                   |                    |   context_func    |  *
 *  ----------------------------------------------------------------------------------  *
 *  ----------------------------------------------------------------------------------  *
 *  |    16   |   17    |                                                            |  *
 *  ----------------------------------------------------------------------------------  *
 *  |   0x40  |   0x44  |                                                            |  *
 *  ----------------------------------------------------------------------------------  *
 *  |       finish      |                                                            |  *
 *  ----------------------------------------------------------------------------------  *
 *                                                                                      *
 ****************************************************************************************/

Coroutine物件被例項化完之後開始執行run方法, run方法會將上一個執行了相關方法的Coroutine物件存入origin中, 並把current置為當前物件:

static sw_co_thread_local Coroutine* current;
Coroutine *origin;

inline long run()
{
    long cid = this->cid;
    origin = current; // orign儲存原來的物件
    current = this; // current置為當前物件
    ctx.swap_in(); // 換入
    ...
}

接下來是切換c棧的核心方法, swap_in和swap_out, 底層也是由boost.context庫提供的, 先來看換入:

bool Context::swap_in()
{   
    jump_fcontext(&swap_ctx_, ctx_, (intptr_t) this, true);
    return true;
}

// jump_x86_64_sysv_elf_gas.S
jump_fcontext:
    /* 當前暫存器壓入棧, 注意, rbp上面實際上還有一個rip, 因為call jump_fcontext 等價於 push rip, jmp jump_fcontext. */
    /* rip儲存著下一條要執行的指令, 在這裡就是jump_fcontext之後的return true */
    pushq  %rbp  /* save RBP */
    pushq  %rbx  /* save RBX */
    pushq  %r15  /* save R15 */
    pushq  %r14  /* save R14 */
    pushq  %r13  /* save R13 */
    pushq  %r12  /* save R12 */

    /* prepare stack for FPU */
    leaq  -0x8(%rsp), %rsp

    /* test for flag preserve_fpu */
    cmp  $0, %rcx
    je  1f

    /* save MMX control- and status-word */
    stmxcsr  (%rsp)
    /* save x87 control-word */
    fnstcw   0x4(%rsp)

1:
    /* store RSP (pointing to context-data) in RDI */
    /* *swap_ctx_ = rsp, 儲存棧頂位置 */
    movq  %rsp, (%rdi)
    /* restore RSP (pointing to context-data) from RSI */
        /* rsp = ctx_, 這裡將當前執行棧指向了剛剛通過make_fcontext構建出來的棧 */
    movq  %rsi, %rsp

    /* test for flag preserve_fpu */
    cmp  $0, %rcx
    je  2f

    /* restore MMX control- and status-word */
    ldmxcsr  (%rsp)
    /* restore x87 control-word */
    fldcw  0x4(%rsp)

2:
    /* prepare stack for FPU */
    leaq  0x8(%rsp), %rsp
    /* 將暫存器恢復從新棧上壓入的值, 這次執行時這裡還都是空的 */
    popq  %r12  /* restrore R12 */
    popq  %r13  /* restrore R13 */
    popq  %r14  /* restrore R14 */
    popq  %r15  /* restrore R15 */
    popq  %rbx  /* restrore RBX */
    popq  %rbp  /* restrore RBP */

    /* restore return-address */
    /* r8 = make_fcontext(往上看看make_fcontext結束後的記憶體佈局圖) */
    popq  %r8

    /* use third arg as return-value after jump */
    /* rax = this */
    movq  %rdx, %rax
    /* use third arg as first arg in context function */
    /* rdi = this */
    movq  %rdx, %rdi

    /* indirect jump to context */
    /* 執行context_func */
    jmp  *%r8

jump_fcontext執行完之後原來的棧記憶體佈局是這樣:

/****************************************************************************************
 *  |<-swap_ctx_                                                                        *
 *  ----------------------------------------------------------------------------------  *
 *  |    0    |    1    |    2    |    3    |    4     |    5    |    6    |    7    |  *
 *  ----------------------------------------------------------------------------------  *
 *  |   0x0   |   0x4   |   0x8   |   0xc   |   0x10   |   0x14  |   0x18  |   0x1c  |  *
 *  ----------------------------------------------------------------------------------  *
 *  | fc_mxcsr|fc_x87_cw|        R12        |         R13        |        R14        |  *
 *  ----------------------------------------------------------------------------------  *
 *  ----------------------------------------------------------------------------------  *
 *  |    8    |    9    |   10    |   11    |    12    |    13   |    14   |    15   |  *
 *  ----------------------------------------------------------------------------------  *
 *  |   0x20  |   0x24  |   0x28  |  0x2c   |   0x30   |   0x34  |   0x38  |   0x3c  |  *
 *  ----------------------------------------------------------------------------------  *
 *  |        R15        |        RBX        |         RBP        |  RIP/return true  |  *
 *  ----------------------------------------------------------------------------------  *
 *                                                                                      *
 ****************************************************************************************/

context_func有一個引數, jump_fcontext執行完後往rdi寫入的this將作為引數給contextfunc使用, fn, private_data_是構造ctx時傳入的引數:

void Context::context_func(void *arg)
{
    Context *_this = (Context *) arg;
    _this->fn_(_this->private_data_); // main_func(php_coro_args)
    _this->end_ = true;
    _this->swap_out();
}

main_func會為當前協程分配一個新的執行棧, 並將其與剛剛例項化好的Coroutine繫結, 然後執行協程的回撥函式:

void PHPCoroutine::main_func(void *arg)
{
    ...
      // 在EG上建立一個新的vmstack, 用於執行go()裡的回撥函式, 之前的執行棧已經被儲存在main_task上了
    vm_stack_init();
    call = (zend_execute_data *) (EG(vm_stack_top));
    task = (php_coro_task *) EG(vm_stack_top);
    EG(vm_stack_top) = (zval *) ((char *) call + PHP_CORO_TASK_SLOT * sizeof(zval)); // 為task預留位置

    call = zend_vm_stack_push_call_frame(call_info, func, argc, object_or_called_scope); // 為引數分配棧空間

    EG(bailout) = NULL;
    EG(current_execute_data) = call; 
    EG(error_handling) = EH_NORMAL;
    EG(exception_class) = NULL;
    EG(exception) = NULL;

    save_vm_stack(task); // 儲存vmstack到當前task上
    record_last_msec(task); // 記錄時間

    task->output_ptr = NULL;
    task->array_walk_fci = NULL;
    task->co = Coroutine::get_current(); // 記錄當前coroutine
    task->co->set_task((void *) task); // coroutine與當前task繫結
    task->defer_tasks = nullptr;
    task->pcid = task->co->get_origin_cid(); // 記錄上一個協程id
    task->context = nullptr;
    task->enable_scheduler = 1;

    if (EXPECTED(func->type == ZEND_USER_FUNCTION))
    {
        ...
                // 初始化execute_data
        zend_init_func_execute_data(call, &func->op_array, retval);
                // 執行協程裡的使用者函式
        zend_execute_ex(EG(current_execute_data));
    }
      ...
}

接下來就是執行使用者回撥函式生成的opcode了, 執行到Co::sleep(1)時會呼叫System::sleep(seconds), 這裡面會為當前coroutine註冊一個定時事件, 回撥函式是sleep_timeout:

int System::sleep(double sec)
{
    Coroutine* co = Coroutine::get_current_safe(); // 獲取當前coroutine
    if (swoole_timer_add((long) (sec * 1000), SW_FALSE, sleep_timeout, co) == NULL) // 為當前couroutine新增一個定時事件
    {
        return -1;
    }
    co->yield(); // 切換
    return 0;
}
// 定時事件註冊的回撥
static void sleep_timeout(swTimer *timer, swTimer_node *tnode)
{
    ((Coroutine *) tnode->data)->resume();
}

yield函式負責php棧和c棧的切換

void Coroutine::yield()
{
    SW_ASSERT(current == this || on_bailout != nullptr);
    state = SW_CORO_WAITING; // 協程狀態變為waiting
    if (sw_likely(on_yield))
    {
        on_yield(task); // php棧切換
    }
    current = origin; // 切換當前協程到上一個
    ctx.swap_out(); // c棧切換
}

先來看php棧的切換, on_yield是初始化時已經註冊好的函式

void PHPCoroutine::init()
{
    Coroutine::set_on_yield(on_yield);
    Coroutine::set_on_resume(on_resume);
    Coroutine::set_on_close(on_close);
}

void PHPCoroutine::on_yield(void *arg)
{
    php_coro_task *task = (php_coro_task *) arg; // 當前task
    php_coro_task *origin_task = get_origin_task(task); // 獲取上一個task
    save_task(task); // 儲存當前任務
    restore_task(origin_task); // 恢復上一個任務
}

拿到上一個task就可以通過上面儲存的執行資訊恢復EG了, 程式很簡單, 只要把vmstack和current_execute_data換回來就可以了:

void PHPCoroutine::restore_task(php_coro_task *task)
{
    restore_vm_stack(task);
        ...
}

inline void PHPCoroutine::restore_vm_stack(php_coro_task *task)
{
    EG(bailout) = task->bailout;
    EG(vm_stack_top) = task->vm_stack_top;
    EG(vm_stack_end) = task->vm_stack_end;
    EG(vm_stack) = task->vm_stack;
    EG(vm_stack_page_size) = task->vm_stack_page_size;
    EG(current_execute_data) = task->execute_data;
    EG(error_handling) = task->error_handling;
    EG(exception_class) = task->exception_class;
    EG(exception) = task->exception;
    ...
}

這個時候php棧執行狀態已經恢復到剛剛呼叫go()函式時的狀態了(main_task), 再看看c棧切換是怎麼處理的:

bool Context::swap_out()
{
    jump_fcontext(&ctx_, swap_ctx_, (intptr_t) this, true);
    return true;
}

回憶一下swap_in函式, swap_ctx_儲存著執行swap_in時的rsp, ctx_儲存著通過make_fcontext初始化好的棧頂位置, 再來看一遍jump_fcontext執行:

// jump_x86_64_sysv_elf_gas.S
jump_fcontext:
    /* 當前暫存器壓入棧, 注意, rbp上面實際上還有一個rip, 因為call jump_fcontext 等價於 push rip, jmp jump_fcontext. */
    /* rip儲存著下一條要執行的指令, 在這裡就是swap_out裡jump_fcontext之後的return true */
    pushq  %rbp  /* save RBP */
    pushq  %rbx  /* save RBX */
    pushq  %r15  /* save R15 */
    pushq  %r14  /* save R14 */
    pushq  %r13  /* save R13 */
    pushq  %r12  /* save R12 */

    /* prepare stack for FPU */
    leaq  -0x8(%rsp), %rsp

    /* test for flag preserve_fpu */
    cmp  $0, %rcx
    je  1f

    /* save MMX control- and status-word */
    stmxcsr  (%rsp)
    /* save x87 control-word */
    fnstcw   0x4(%rsp)

1:
    /* store RSP (pointing to context-data) in RDI */
    /* *ctx_ = rsp, 儲存棧頂位置 */
    movq  %rsp, (%rdi)
    /* restore RSP (pointing to context-data) from RSI */
        /* rsp = swap_ctx_, 這裡將當前執行棧指向了之前執行swap_in時的rsp */
    movq  %rsi, %rsp

    /* test for flag preserve_fpu */
    cmp  $0, %rcx
    je  2f

    /* restore MMX control- and status-word */
    ldmxcsr  (%rsp)
    /* restore x87 control-word */
    fldcw  0x4(%rsp)

2:
    /* prepare stack for FPU */
    leaq  0x8(%rsp), %rsp
    /* 將暫存器恢復到執行swap_in時的狀態 */
    popq  %r12  /* restrore R12 */
    popq  %r13  /* restrore R13 */
    popq  %r14  /* restrore R14 */
    popq  %r15  /* restrore R15 */
    popq  %rbx  /* restrore RBX */
    popq  %rbp  /* restrore RBP */

    /* restore return-address */
    /* r8 = Context::swap_in::return true */
    popq  %r8

    /* use third arg as return-value after jump */
    /* rax = this */
    movq  %rdx, %rax
    /* use third arg as first arg in context function */
    /* rdi = this */
    movq  %rdx, %rdi

    /* indirect jump to context */
    /* 接著上一次swap_in的位置繼續執行 */
    jmp  *%r8

這個時候php和c棧都已經恢復到執行swap_in的狀態, 程式碼一路返回到zif_swoole_coroutine_create執行完畢:

bool Context::swap_in()
{
    jump_fcontext(&swap_ctx_, ctx_, (intptr_t) this, true);
    return true; // 從這裡開始繼續執行, 回到之前呼叫它的函式
}

inline long run()
{   
    ...
    ctx.swap_in(); // 返回
    check_end(); // 檢查協程是否已經執行完畢, 執行完畢需要做清理
    return cid;
}

static inline long create(coroutine_func_t fn, void* args = nullptr)
{
    return (new Coroutine(fn, args))->run();
}

long PHPCoroutine::create(zend_fcall_info_cache *fci_cache, uint32_t argc, zval *argv)
{
    ...
    return Coroutine::create(main_func, (void*) &php_coro_args);
}

PHP_FUNCTION(swoole_coroutine_create)
{
    ...
    long cid = PHPCoroutine::create(&fci_cache, fci.param_count, fci.params);
    ...
    RETURN_LONG(cid); // 返回協程id
}

因為execute_data已經切換回main_task上的主協程opcode了, 所以下一條opcode是 'echo "a"', 相當於把sleep後面的程式碼跳過了

<?php
go(function (){
    Co::sleep(1);
    echo "a";
});

echo "c"; // 從這裡開始繼續執行

那麼協程裡sleep後面的程式碼什麼時候會執行呢, 我們注意到之前呼叫sleep時向reactor註冊了一個定時事件sleep_timeout, 定時時間到來時會去觸發這個回撥函式. 這裡先把php執行棧還原到呼叫sleep時的狀態, 再呼叫swap_in, c棧又還原到前一次swap_out時的狀態, 此時執行流已經回到了協程內部:

// 定時事件註冊的回撥
static void sleep_timeout(swTimer *timer, swTimer_node *tnode)
{
    ((Coroutine *) tnode->data)->resume();
}
// 恢復整個執行環境
void Coroutine::resume()
{
      ... 
    state = SW_CORO_RUNNING; // 協程狀態改為進行中
    if (sw_likely(on_resume))
    {
        on_resume(task); // 恢復php執行狀態
    }
    origin = current;
    current = this;
    ctx.swap_in(); // 恢復c棧
    ...
}

// 恢復task
void PHPCoroutine::on_resume(void *arg)
{
    php_coro_task *task = (php_coro_task *) arg;
    php_coro_task *current_task = get_task();
    save_task(current_task); // 儲存當前任務 
    restore_task(task); // 恢復任務
    record_last_msec(task); // 記錄時間
}

zend_vm繼續讀取到之後的opcode 'echo "a"', 繼續執行

<?php
go(function (){
    Co::sleep(1);
    echo "a"; // 從這裡開始繼續執行
});

echo "c";

當前回撥中的opcode被全部執行完畢之後, PHPCoroutine::main_func還會把之前註冊的defer執行一遍, 順序是FILO, 然後清理資源

void PHPCoroutine::main_func(void *arg)
{
    ...
        if (EXPECTED(func->type == ZEND_USER_FUNCTION))
    {
        ...
                // 協程裡的使用者函式執行完畢, 返回
        zend_execute_ex(EG(current_execute_data));
    }

        if (task->defer_tasks)
        {
            std::stack<php_swoole_fci *> *tasks = task->defer_tasks;
            while (!tasks->empty())
            {
                php_swoole_fci *defer_fci = tasks->top();
                tasks->pop(); // FILO
                defer_fci->fci.param_count = 1;
                defer_fci->fci.params = retval;
            // 呼叫defer註冊的函式
                if (UNEXPECTED(sw_zend_call_function_anyway(&defer_fci->fci, &defer_fci->fci_cache) != SUCCESS))
                {
                    php_swoole_fatal_error(E_WARNING, "defer callback handler error");
                }
                sw_zend_fci_cache_discard(&defer_fci->fci_cache);
                efree(defer_fci);
            }
            delete task->defer_tasks;
            task->defer_tasks = nullptr;
        }

        // resources release
        zval_ptr_dtor(retval);
        if (fci_cache.object)
        {
            OBJ_RELEASE(fci_cache.object);
        }
        if (task->context)
        {
            OBJ_RELEASE(task->context);
        }
}

main_func執行完回到Context::context_func方法, 把當前協程標記為已結束, 再做一次swap_out回到剛剛swap_in的地方, 也就是resume方法, 之後去檢查喚醒的協程有沒有執行完畢, 檢查只需要判斷end_屬性

void Context::context_func(void *arg)
{
    Context *_this = (Context *) arg;
    _this->fn_(_this->private_data_); // main_func(closure)返回
    _this->end_ = true; // 當前協程標記為已結束
    _this->swap_out(); // 切換回main c棧
}

void Coroutine::resume()
{
    ...
    ctx.swap_in(); // 切換回這裡
    check_end(); // 檢查協程是否已經結束
}

inline void check_end()
{
    if (ctx.is_end())
    {
        close();
    }
}

inline bool is_end()
{
    return end_;
}

close方法會清理為這個協程建立的vm_stack, 同時切回到main_task, 這時c棧和php棧都已經切換回主協程了

void Coroutine::close()
{
    ...
    state = SW_CORO_END; // 狀態改為已結束
    if (on_close)
    {
        on_close(task);
    }
    current = origin;
    coroutines.erase(cid); // 移除當前協程
    delete this;
}

void PHPCoroutine::on_close(void *arg)
{
    php_coro_task *task = (php_coro_task *) arg;
    php_coro_task *origin_task = get_origin_task(task);
    vm_stack_destroy(); // 銷燬vm_stack
    restore_task(origin_task); // 還原main_task
}

到這裡, 協程的整個生命週期就已經結束了.

相關文章