PostgreSQL一複合查詢SQL優化例子-(多個exists,範圍檢索,IN檢索,模糊檢索組合)
標籤
PostgreSQL , 多個exists , 範圍檢索 , IN檢索 , 模糊檢索 , 組合 , gin , recheck , filter , subplan
背景
當一個SQL包含複雜的多個exists , 範圍檢索 , IN檢索 , 模糊檢索 , 組合查詢時,可能由於索引使用不當導致查詢效能較慢。
主要的問題在於,索引使用不當,可能導致幾個問題:
1、索引本身掃描的耗時過多
2、點陣圖掃描引入的recheck過多
3、subplan 引入的 filter過多
一個現實的例子,可以看到耗時集中在recheck和filter上面,每個索引掃描返回的記錄數都很多,但是組合起來是0條符合條件的記錄。
問題就出在索引不正確上,導致了問題。
-> Subquery Scan on "*SELECT* 2" (cost=273453.65..432483146.70 rows=223 width=349) (actual time=25932.371..25932.371 rows=0 loops=1)
Output: ...................................
Buffers: shared hit=920071 read=269255
I/O Timings: read=1552.767
-> Bitmap Heap Scan on zjxftypt.tab1010201 t_1 (cost=273453.65..432483144.47 rows=223 width=349) (actual time=25932.370..25932.370 rows=0 loops=1)
Output: t_1.storeid, t_1.xfjbh, t_1.wtsd, t_1.rs, t_1.digoal123x, t_1.dz, t_1.blfsjd, t_1.qx, t_1.gk, t_1.xfrq, t_1.djsj, t_1.djdw, t_1.xfjclzt, t_1.digoal123, t_1.xfxs
-- 點陣圖掃描的條件重新過濾 , 過濾太多了
Recheck Cond: ((t_1.xfrq < (to_date(`2018-06-11`::character varying, `yyyy-mm-dd`::character varying) + 1)) AND (t_1.xfrq >= to_date(`2014-02-12`::character varying, `yyyy-mm-dd`::character varying)) AND (t_1.digoal123 = 1::numeric))
Rows Removed by Index Recheck: 1214155
-- 過濾exists的JOIN條件值是否滿足 ,過濾太多了
Filter: (((t_1.digoal123x)::text ~~ `%阿里巴巴%`::text) AND ((alternatives: SubPlan 4 or hashed SubPlan 5) OR(alternatives: SubPlan 6 or hashed SubPlan 7)))
Rows Removed by Filter: 5215804
Buffers: shared hit=920071 read=269255
I/O Timings: read=1552.767
-- 條件1,2點陣圖掃描
-> BitmapAnd (cost=273453.65..273453.65 rows=4909643 width=0) (actual time=2510.718..2510.718 rows=0 loops=1)
Buffers: shared hit=27036 read=16539
I/O Timings: read=101.425
-- 自身條件1 符合條件的記錄太多了
-> Bitmap Index Scan on index_tab1010201_xfrq (cost=0.00..126565.99 rows=4943755 width=0) (actual time=1085.429..1085.429 rows=5268071 loops=1)
Index Cond: ((t_1.xfrq < (to_date(`2018-06-11`::character varying, `yyyy-mm-dd`::character varying) + 1)) AND (t_1.xfrq >= to_date(`2014-02-12`::character varying, `yyyy-mm-dd`::character varying)))
Buffers: shared hit=3288 read=16539
I/O Timings: read=101.425
-- 自身條件2 符合條件的記錄太多了
-> Bitmap Index Scan on index_tab1010201_digoal123 (cost=0.00..146887.30 rows=6599316 width=0) (actual time=1355.825..1355.825 rows=6845646 loops=1)
Index Cond: (t_1.digoal123 = 1::numeric)
Buffers: shared hit=23748
..............sub plans
優化舉例
1、復現問題,建立測試表
create table test(id int, c1 text, c2 date, c3 text);
SQL如下
select * from test
where
(
exists (select 1 from pg_class where oid::int = test.id)
or
exists (select 1 from pg_attribute where attrelid::int=test.id)
)
and c1 in (`1`,`2`,`3`)
and c2 between current_date-1 and current_date
and c3 ~ `abcdef`;
2、寫入測試護甲1000萬條
insert into test select id, (random()*10)::int::text, current_date, md5(random()::text) from generate_series(1,10000000) t(id);
3、建立索引,使之可以在索引層面過濾掉所有資料
create extension pg_trgm;
create extension btree_gin;
create index idx_test_1 on test using gin (c1, c2, c3 gin_trgm_ops);
如果是復現問題,應該是這兩個索引
create index idx1 on test (c1);
create index idx2 on test (c2);
4、檢視執行計劃
postgres=# explain (analyze,verbose,timing,costs,buffers)
select * from test
where
(
exists (select 1 from pg_class where oid::int = test.id)
or
exists (select 1 from pg_attribute where attrelid::int=test.id)
)
and c1 in (`1`,`2`,`3`)
and c2 between current_date-1 and current_date
and c3 ~ `abcdef`;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on public.test (cost=156.43..8593.79 rows=228 width=43) (actual time=837.151..837.151 rows=0 loops=1)
Output: test.id, test.c1, test.c2, test.c3
-- 點陣圖掃描重新RECHECK過濾
Recheck Cond: ((test.c1 = ANY (`{1,2,3}`::text[])) AND (test.c2 >= (CURRENT_DATE - 1)) AND (test.c2 <= CURRENT_DATE) AND (test.c3 ~ `abcdef`::text))
Rows Removed by Index Recheck: 1
-- exists子句的條件檢查,過濾
Filter: ((alternatives: SubPlan 1 or hashed SubPlan 2) OR (alternatives: SubPlan 3 or hashed SubPlan 4))
Rows Removed by Filter: 7
Heap Blocks: exact=8
Buffers: shared hit=11658 read=23
-- 所有條件壓到GIN複合索引裡面
-- GIN多個條件時,會自動內部點陣圖掃描
-> Bitmap Index Scan on idx_test_1 (cost=0.00..156.37 rows=304 width=0) (actual time=834.418..834.418 rows=8 loops=1)
Index Cond: ((test.c1 = ANY (`{1,2,3}`::text[])) AND (test.c2 >= (CURRENT_DATE - 1)) AND (test.c2 <= CURRENT_DATE) AND (test.c3 ~ `abcdef`::text))
Buffers: shared hit=11582 read=23
SubPlan 1
-> Seq Scan on pg_catalog.pg_class (cost=0.00..15.84 rows=1 width=0) (never executed)
Filter: ((pg_class.oid)::integer = test.id)
SubPlan 2
-> Seq Scan on pg_catalog.pg_class pg_class_1 (cost=0.00..14.87 rows=387 width=4) (actual time=0.014..0.155 rows=388 loops=1)
Output: (pg_class_1.oid)::integer
Buffers: shared hit=11
SubPlan 3
-> Index Only Scan using pg_attribute_relid_attnum_index on pg_catalog.pg_attribute (cost=0.28..84.39 rows=8 width=0) (never executed)
Filter: ((pg_attribute.attrelid)::integer = test.id)
Heap Fetches: 0
SubPlan 4
-> Index Only Scan using pg_attribute_relid_attnum_index on pg_catalog.pg_attribute pg_attribute_1 (cost=0.28..77.13 rows=2904 width=4) (actual time=0.029..1.081 rows=2941 loops=1)
Output: (pg_attribute_1.attrelid)::integer
Heap Fetches: 459
Buffers: shared hit=57
Planning time: 1.070 ms
Execution time: 839.834 ms
(29 rows)
看起來還不錯,但是仔細深究實際上並沒有優化太多,還可以有更好的優化。
5、深入優化,需要理解GIN複合索引內部的執行機制(點陣圖掃描)。
因為滿足C3條件的記錄本身就很少,所以完全不需要使用GIN內部的點陣圖掃描。
postgres=# select count(*) from test where c3 ~ `abcdef`;
count
-------
23
(1 row)
修改為如下索引
postgres=# drop index idx_test_1 ;
DROP INDEX
postgres=# create index idx_test_1 on test using gin (c3 gin_trgm_ops) ;
CREATE INDEX
6、耗時程式設計24毫秒
postgres=# explain (analyze,verbose,timing,costs,buffers)
select * from test
where
(
exists (select 1 from pg_class where oid::int = test.id)
or
exists (select 1 from pg_attribute where attrelid::int=test.id)
)
and c1 in (`1`,`2`,`3`)
and c2 between current_date-1 and current_date
and c3 ~ `abcdef`;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on public.test (cost=53.76..27798.16 rows=228 width=43) (actual time=24.287..24.287 rows=0 loops=1)
Output: test.id, test.c1, test.c2, test.c3
Recheck Cond: (test.c3 ~ `abcdef`::text)
Rows Removed by Index Recheck: 6
Filter: ((test.c1 = ANY (`{1,2,3}`::text[])) AND (test.c2 <= CURRENT_DATE) AND (test.c2 >= (CURRENT_DATE - 1)) AND ((alternatives: SubPlan 1 or hashed SubPlan 2) OR (alternatives: SubPlan 3 or hashed SubPlan 4)))
Rows Removed by Filter: 23
Heap Blocks: exact=29
Buffers: shared hit=226
-> Bitmap Index Scan on idx_test_1 (cost=0.00..53.70 rows=1000 width=0) (actual time=21.517..21.517 rows=29 loops=1)
Index Cond: (test.c3 ~ `abcdef`::text)
Buffers: shared hit=128
SubPlan 1
-> Seq Scan on pg_catalog.pg_class (cost=0.00..15.84 rows=1 width=0) (never executed)
Filter: ((pg_class.oid)::integer = test.id)
SubPlan 2
-> Seq Scan on pg_catalog.pg_class pg_class_1 (cost=0.00..14.87 rows=387 width=4) (actual time=0.011..0.156 rows=387 loops=1)
Output: (pg_class_1.oid)::integer
Buffers: shared hit=11
SubPlan 3
-> Index Only Scan using pg_attribute_relid_attnum_index on pg_catalog.pg_attribute (cost=0.28..84.39 rows=8 width=0) (never executed)
Filter: ((pg_attribute.attrelid)::integer = test.id)
Heap Fetches: 0
SubPlan 4
-> Index Only Scan using pg_attribute_relid_attnum_index on pg_catalog.pg_attribute pg_attribute_1 (cost=0.28..77.13 rows=2904 width=4) (actual time=0.028..1.099 rows=2938 loops=1)
Output: (pg_attribute_1.attrelid)::integer
Heap Fetches: 456
Buffers: shared hit=58
Planning time: 0.801 ms
Execution time: 24.403 ms
(29 rows)
Time: 26.052 ms
小結
本文的SQL比較複雜,優化的思路和其他SQL差不多,只是本例可以理解BITMAP SCAN以及GIN索引的內部BITMAP SCAN在對較大資料進行合併時,可能引入的開銷。
切入點依舊是explain,找耗時段,找背後的原因,解決。
1、什麼時候使用GIN複合?
當任意一個條件,選擇性不好時,使用複合。
什麼時候使用GIN非複合?
2、當有有一個條件,選擇性很好時,把它單獨拿出來,作為一個獨立索引。比如本例的c3模糊查詢欄位,過濾性好,應該單獨拿出來。
其實就是說,選擇性不好的列,不要放到索引裡面,即使要放,也應該等PG出了分割槽索引後,將這種列作為分割槽索引的分割槽鍵。(多顆樹),或者使用partial index。
《PostgreSQL 黑科技 – 空間聚集儲存, 內窺GIN, GiST, SP-GiST索引》
《寶劍贈英雄 – 任意組合欄位等效查詢, 探探PostgreSQL多列展開式B樹 (GIN)》
《PostgreSQL GIN multi-key search 優化》
《從難纏的模糊查詢聊開 – PostgreSQL獨門絕招之一 GIN , GiST , SP-GiST , RUM 索引原理與技術背景》
《beyond b-tree (gingist索引講解PDF)》
相關文章
- SQL Server之查詢檢索操作SQLServer
- 03_查詢和檢索
- EI 和 SCI 檢索號查詢
- 擊敗二分檢索演算法——插值檢索、快速檢索演算法
- 【雲圖】自有資料的多邊形檢索(雲檢索)
- 資訊檢索
- PostgreSQL實時高效搜尋-全文檢索、模糊查詢、正則查詢、相似查詢、ADHOC查詢SQL
- 影象檢索:資訊檢索評價指標mAP指標
- 【搜尋引擎】Solr全文檢索近實時查詢優化Solr優化
- 基於ElasticSearch實現商品的全文檢索檢索Elasticsearch
- 資料檢索
- Elasticsearch檢索文件。Elasticsearch
- Oracle全文檢索Oracle
- PostgreSQL全文檢索-詞頻統計SQL
- 效能優化|多複雜表關聯查詢,你必須要知道的檢索姿勢!優化
- Elasticsearch 查詢結果分組統計,聚合檢索(group by stats)Elasticsearch
- HBase 資料庫檢索效能優化策略資料庫優化
- ACM – 5.3 排序檢索ACM排序
- 全文檢索庫 bluge
- ElasticSearch入門檢索Elasticsearch
- ElasticSearch進階檢索Elasticsearch
- MySQL單表檢索MySql
- PostgreSQLjson索引實踐-檢索(存在、包含、等值、範圍等)加速SQLJSON索引
- 智慧公安 多樣化情報研判分析檢索
- IM全文檢索技術專題(四):微信iOS端的最新全文檢索技術優化實踐iOS優化
- DashVector + DashScope升級多模態檢索
- Kibana 全文檢索操作
- solr全文檢索學習Solr
- Oracle錯誤號檢索Oracle
- 科技論文的檢索
- Oracle全文檢索之中文Oracle
- 條件過濾檢索
- 關鍵詞感知檢索
- 一種基於概率檢索模型的大資料專利檢索方法與流程模型大資料
- coreseek,php,mysql全文檢索部署(一)PHPMySql
- openGauss每日一練(全文檢索)
- DashVector + ModelScope 玩轉多模態檢索
- Graph RAG: 知識圖譜結合 LLM 的檢索增強