Greenplum計算能力估算-暨多大表需要分割槽,單個分割槽多大適宜
標籤
PostgreSQL , Greenplum , 分割槽 , 實踐
背景
在資料倉儲業務中,單表的資料量通常是非常巨大的。Greenplum在這方面做了很多的優化
1、支援列儲存
2、支援向量計算
3、支援分割槽表
4、支援btree, bitmap, gist索引介面
5、執行平行計算
6、支援HASH JOIN
等
提高資料篩選的效率是一個較為低廉有效的優化手段,比如表分割槽。
但是分割槽是不是越多越好呢?
實際上分割槽過多也會引入導致優化器生成執行計劃較慢,後設資料過多,SYSCACHE過大等問題。
設定多大分割槽應該權衡影響,同時又要考慮計算能力。
單個SEGMENT多大資料量合適
GPDB是一個分散式資料庫,執行一條複雜QUERY時,所有的SEGMENT可能並行參與計算。
那麼最慢的SEGMENT就成為了整個SQL的瓶頸,單個SEGMENT多少記錄合適呢?
可以做一個簡單的測試,生成一份測試報告,以供參考。
建立3種常用欄位型別,分別測試這幾種型別的聚合統計能力,JOIN能力。
1、int8型別
postgres=> create temp table t1 (id int8) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> create temp table t2 (id int8) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> insert into t1 select generate_series(1,100000000);
INSERT 0 100000000
postgres=> insert into t2 select * from t1;
INSERT 0 100000000
2、text型別
postgres=> create temp table tt1 (id text) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> create temp table tt2 (id text) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> insert into tt1 select id from t1;
INSERT 0 100000000
postgres=> insert into tt2 select id from tt1;
INSERT 0 100000000
3、numeric型別
postgres=> create temp table ttt1 (id numeric) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> create temp table ttt2 (id numeric) with (APPENDONLY=true, ORIENTATION=column);
NOTICE: Table doesn`t have `DISTRIBUTED BY` clause -- Using column named `id` as the Greenplum Database data distribution key for this table.
HINT: The `DISTRIBUTED BY` clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=> insert into ttt1 select id from t1;
INSERT 0 100000000
postgres=> insert into ttt2 select id from t1;
INSERT 0 100000000
測試環境為單物理機(64執行緒機器),48個SEGMENT。1億記錄。
1 聚合
1、int8型別
postgres=> explain analyze select count(*),sum(id),avg(id),min(id),max(id),stddev(id) from t1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=2524480.55..2524480.56 rows=1 width=120)
Rows out: 1 rows with 0.002 ms to first row, 159 ms to end, start offset by 1.624 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=2524480.02..2524480.52 rows=1 width=120)
Rows out: 48 rows at destination with 221 ms to end, start offset by 1.626 ms.
-> Aggregate (cost=2524480.02..2524480.02 rows=1 width=120)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.001 ms to first row, 134 ms to end, start offset by 10 ms.
-> Append-only Columnar Scan on t1 (cost=0.00..1024480.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 10 ms to end, start offset by 37 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 382.093 ms
(16 rows)
2、text型別
postgres=> explain analyze select count(*),sum(t1.id::int8),avg(t1.id::int8),min(t1.id::int8),max(t1.id::int8),stddev(t1.id::int8) from tt1 t1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=2527178.57..2527178.58 rows=1 width=120)
Rows out: 1 rows with 0.003 ms to first row, 798 ms to end, start offset by 1.382 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=2527178.02..2527178.53 rows=1 width=120)
Rows out: 48 rows at destination with 1006 ms to end, start offset by 1.385 ms.
-> Aggregate (cost=2527178.02..2527178.04 rows=1 width=120)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.003 ms to first row, 926 ms to end, start offset by 14 ms.
-> Append-only Columnar Scan on tt1 t1 (cost=0.00..1027178.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 16 ms to end, start offset by 36 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 1805.789 ms
(16 rows)
3、numeric型別
postgres=> explain analyze select count(*),sum(id),avg(id),min(id),max(id),stddev(id) from ttt1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=2527512.55..2527512.56 rows=1 width=168)
Rows out: 1 rows with 0.001 ms to first row, 1712 ms to end, start offset by 1.292 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=2527512.02..2527512.52 rows=1 width=168)
Rows out: 48 rows at destination with 1926 ms to end, start offset by 1.293 ms.
-> Aggregate (cost=2527512.02..2527512.02 rows=1 width=168)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0 ms to first row, 1849 ms to end, start offset by 4.436 ms.
-> Append-only Columnar Scan on ttt1 (cost=0.00..1027512.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 7.385 ms to end, start offset by 53 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 3640.108 ms
(16 rows)
2 JOIN 聚合
1、int8型別
postgres=> explain analyze select count(*),sum(t1.id),avg(t1.id),min(t1.id),max(t1.id),stddev(t1.id) from t1 join t2 using (id);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=6689588.56..6689588.57 rows=1 width=120)
Rows out: 1 rows with 0.003 ms to first row, 908 ms to end, start offset by 1.505 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=6689588.02..6689588.52 rows=1 width=120)
Rows out: 48 rows at destination with 1517 ms to end, start offset by 1.508 ms.
-> Aggregate (cost=6689588.02..6689588.03 rows=1 width=120)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.002 ms to first row, 81 ms to end, start offset by 11 ms.
-> Hash Join (cost=2372137.00..5189588.00 rows=2083334 width=8)
Hash Cond: t1.id = t2.id
Rows out: Avg 2083333.3 rows x 48 workers. Max 2083479 rows (seg42) with 0.013 ms to first row, 1359 ms to end, start offset by 38 ms.
Executor memory: 65105K bytes avg, 65109K bytes max (seg42).
Work_mem used: 65105K bytes avg, 65109K bytes max (seg42). Workfile: (0 spilling, 0 reused)
-> Append-only Columnar Scan on t1 (cost=0.00..1024480.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 0.003 ms to end, start offset by 38 ms.
-> Hash (cost=1024480.00..1024480.00 rows=2083334 width=8)
Rows in: (No row requested) 0 rows (seg0) with 0 ms to end.
-> Append-only Columnar Scan on t2 (cost=0.00..1024480.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 30 ms to end, start offset by 54 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0). Work_mem: 65109K bytes max.
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 2426.790 ms
(25 rows)
2、text型別
postgres=> explain analyze select count(*),sum(t1.id::int8),avg(t1.id::int8),min(t1.id::int8),max(t1.id::int8),stddev(t1.id::int8) from tt1 t1 join tt2 using (id);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=6694984.57..6694984.58 rows=1 width=120)
Rows out: 1 rows with 0.001 ms to first row, 2068 ms to end, start offset by 1.423 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=6694984.02..6694984.53 rows=1 width=120)
Rows out: 48 rows at destination with 3169 ms to end, start offset by 1.425 ms.
-> Aggregate (cost=6694984.02..6694984.04 rows=1 width=120)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.004 ms to first row, 1049 ms to end, start offset by 11 ms.
-> Hash Join (cost=2374835.00..5194984.00 rows=2083334 width=8)
Hash Cond: t1.id = tt2.id
Rows out: Avg 2083333.3 rows x 48 workers. Max 2084068 rows (seg4) with 0.012 ms to first row, 2240 ms to end, start offset by 60 ms.
Executor memory: 65105K bytes avg, 65128K bytes max (seg4).
Work_mem used: 65105K bytes avg, 65128K bytes max (seg4). Workfile: (0 spilling, 0 reused)
-> Append-only Columnar Scan on tt1 t1 (cost=0.00..1027178.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 0.003 ms to end, start offset by 11 ms.
-> Hash (cost=1027178.00..1027178.00 rows=2083334 width=8)
Rows in: (No row requested) 0 rows (seg0) with 0 ms to end.
-> Append-only Columnar Scan on tt2 (cost=0.00..1027178.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 37 ms to end, start offset by 43 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0). Work_mem: 65128K bytes max.
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 5249.571 ms
(25 rows)
3、numeric型別
postgres=> explain analyze select count(*),sum(t1.id),avg(t1.id),min(t1.id),max(t1.id),stddev(t1.id) from ttt1 t1 join ttt2 using (id);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=6695652.56..6695652.57 rows=1 width=168)
Rows out: 1 rows with 0.003 ms to first row, 2661 ms to end, start offset by 1.406 ms.
-> Gather Motion 48:1 (slice1; segments: 48) (cost=6695652.02..6695652.52 rows=1 width=168)
Rows out: 48 rows at destination with 4696 ms to end, start offset by 1.409 ms.
-> Aggregate (cost=6695652.02..6695652.03 rows=1 width=168)
Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.004 ms to first row, 2770 ms to end, start offset by 4.078 ms.
-> Hash Join (cost=2375169.00..5195652.00 rows=2083334 width=8)
Hash Cond: t1.id = ttt2.id
Rows out: Avg 2083333.3 rows x 48 workers. Max 2083627 rows (seg10) with 0.015 ms to first row, 3745 ms to end, start offset by 35 ms.
Executor memory: 65105K bytes avg, 65114K bytes max (seg10).
Work_mem used: 65105K bytes avg, 65114K bytes max (seg10). Workfile: (0 spilling, 0 reused)
-> Append-only Columnar Scan on ttt1 t1 (cost=0.00..1027512.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 0.012 ms to end, start offset by 45 ms.
-> Hash (cost=1027512.00..1027512.00 rows=2083334 width=8)
Rows in: (No row requested) 0 rows (seg0) with 0 ms to end.
-> Append-only Columnar Scan on ttt2 (cost=0.00..1027512.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 30 ms to end, start offset by 46 ms.
Slice statistics:
(slice0) Executor memory: 315K bytes.
(slice1) Executor memory: 378K bytes avg x 48 workers, 378K bytes max (seg0). Work_mem: 65114K bytes max.
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 7369.522 ms
(25 rows)
效能指標
型別 | 總記錄數 | segment數 | 單segment記錄數 | 單表聚合耗時 | 多表JOIN+聚合耗時 | 每segment每秒聚合記錄數 | 每segment每秒JOIN+聚合記錄數 |
---|---|---|---|---|---|---|---|
INT8 | 1億行 | 48 | 208萬行 | 0.38秒 | 2.4秒 | 547萬行 | 86萬行 * 2 |
TEXT | 1億行 | 48 | 208萬行 | 1.8秒 | 5.2秒 | 115萬行 | 40萬行 * 2 |
NUMERIC | 1億行 | 48 | 208萬行 | 3.6秒 | 7.37秒 | 57萬行 | 28萬行 * 2 |
小結
設定多少個分割槽,除了業務邏輯層面的因素(比如按日、月、年,或者按LIST等),另外還應該考慮兩方面的因素:
1、分割槽過多也會引入導致優化器生成執行計劃較慢,後設資料過多,SYSCACHE過大等問題。
2、單個SEGMENT的計算能力。(將分割槽後單個SEGMENT的單個分割槽內的記錄數壓縮到可以接受的範圍。)例如:
- 100億條記錄,1000個SEGMENT,不分割槽的情況下,一個SEGMENT有1000萬條記錄。如果要滿足在輸入WHERE條件過濾資料後(假設過濾後要計算的記錄數小於50億條)INT8型別欄位聚合1秒響應,根據以上效能測試資料,建議至少分成2個區。
數值型別的選擇,除非精度要求,建議不要使用numeric。 建議使用int, int8, float, float8等型別。從以上測試可以看出效能差異巨大。
參考
《PostgreSQL 11 preview – 分割槽表智慧並行JOIN (已類似MPP架構,效能暴增)》
《PostgreSQL 11 preview – 分割槽表智慧並行聚合、分組計算(已類似MPP架構,效能暴增)》
相關文章
- oracle分割槽表和分割槽表exchangeOracle
- oracle分割槽表和非分割槽表exchangeOracle
- 【Linux】MBR磁碟分割槽表只能有四個分割槽?Linux
- PostgreSQL/LightDB 分割槽表之分割槽裁剪SQL
- Oracle drop分割槽表單個分割槽無法透過閃回恢復Oracle
- 非分割槽錶轉換成分割槽表
- [oracle] expdp 匯出分割槽表的分割槽Oracle
- PG的非分割槽表線上轉分割槽表
- Oracle分割槽表基礎運維-07增加分割槽(3列表分割槽)Oracle運維
- Oracle分割槽表基礎運維-07增加分割槽(2 HASH分割槽)Oracle運維
- 【MYSQL】 分割槽表MySql
- oracle 分割槽表move和包含分割槽表的lob moveOracle
- 移動分割槽表和分割槽索引的表空間索引
- Oracle分割槽表基礎運維-07增加分割槽(1範圍分割槽)Oracle運維
- windows10 c盤多大合適_win10 c盤分割槽的詳細教程WindowsWin10
- Oracle分割槽表基礎運維-04列表分割槽Oracle運維
- MySQL 分割槽表探索MySql
- 分割槽表-實戰
- Linux分割槽方案、分割槽建議Linux
- Oracle分割槽表基礎運維-09刪除分割槽Oracle運維
- Oracle分割槽表基礎運維-05組合分割槽Oracle運維
- Oracle分割槽表基礎運維-02範圍分割槽Oracle運維
- Oracle分割槽表基礎運維-03HASH分割槽Oracle運維
- 分割槽表之自動增加分割槽(11G)
- Oracle分割槽表基礎運維-06分割槽表索引Oracle運維索引
- oracle 線上重新定義,普通表改變分割槽表,分割槽表可以更改型別、分割槽欄位等Oracle型別
- PostgreSQL 並行vacuum patch - 暨為什麼需要並行vacuum或分割槽表SQL並行
- HGDB的分割槽表實現SQL Server的分割槽檢視SQLServer
- 非分割槽錶轉換成分割槽表以及注意事項
- Oracle分割槽表基礎運維-01分割槽表分類Oracle運維
- SQL Server大分割槽表沒有空分割槽的情況下如何擴充套件分割槽的方法SQLServer套件
- Linux 分割槽擴容(根分割槽擴容,SWAP 分割槽擴容,掛載新分割槽為目錄)Linux
- SQL SERVER之分割槽表SQLServer
- ORACLE分割槽表梳理系列Oracle
- Spark操作Hive分割槽表SparkHive
- OceaBase 分割槽表建立技巧
- Mysql表分割槽實現MySql
- mysql 進行表分割槽MySql