騰訊又添 AI 開源專案!騰訊 AI Lab 開源業內最大規模多標籤影像資料集

騰訊開源發表於2019-02-27

2018年9月10日,騰訊AI Lab宣佈將於9月底開源“Tencent ML-Images”專案,該專案由多標籤影像資料集ML-Images,以及業內目前同類深度學習模型中精度最高的深度殘差網路ResNet-101構成。

該專案的開源,是騰訊AI Lab在計算機視覺領域所累積的基礎能力的一次釋放,為人工智慧領域的科研人員和工程師提供了充足的高質量訓練資料,及簡單易用、效能強大的深度學習模型,促進人工智慧行業共同發展。

騰訊AI Lab此次公佈的影像資料集ML-Images,包含了1800萬影像和1.1萬多種常見物體類別,在業內已公開的多標籤影像資料集中規模最大,足以滿足一般科研機構及中小企業的使用場景。此外,騰訊AI Lab還將提供基於ML-Images訓練得到的深度殘差網路ResNet-101。該模型具有優異的視覺表示能力和泛化效能,在當前業內同類模型中精度最高,將為包括影像、視訊等在內的視覺任務提供強大支撐,並助力影像分類、物體檢測、物體跟蹤、語義分割等技術水平的提升。

以深度神經網路為典型代表的深度學習技術已經在很多領域充分展現出其優異的能力,尤其是計算機視覺領域,包括影像和視訊的分類、理解和生成等重要任務。然而,要充分發揮出深度學習的視覺表示能力,必須建立在充足的高質量訓練資料、優秀的模型結構和模型訓練方法,以及強大的的計算資源等基礎能力之上。

各大科技公司都非常重視人工智慧基礎能力的建設,都建立了僅面向其內部的大型影像資料集,例如谷歌的JFT-300M和Facebook的Instagram資料集。但這些資料集及其訓練得到的模型都沒有公開,對於一般的科研機構和中小企業來說,這些人工智慧基礎能力有著非常高的門檻。

當前業內公開的最大規模的多標籤影像資料集是谷歌公司的Open Images, 包含900萬訓練影像和6000多物體類別。騰訊AI Lab此次開源的ML-Images資料集包括1800萬訓練影像和1.1萬多常見物體類別,或將成為新的行業基準資料集。除了資料集,騰訊AI
Lab團隊還將在此次開源專案中詳細介紹:

1)大規模的多標籤影像資料集的構建方法,包括影像的來源、影像候選類別集合、類別語義關係和影像的標註。在ML-Images的構建過程中,團隊充分利用了類別語義關係來幫助對影像的精準標註。

2)基於ML-Images的深度神經網路的訓練方法。團隊精心設計的損失函式和訓練方法,可以有效抑制大規模多標籤資料集中類別不均衡對模型訓練的負面影響。

3)基於ML-Images訓練得到的ResNet-101模型,具有優異的視覺表示能力和泛化效能。通過遷移學習,該模型在ImageNet驗證集上取得了80.73%的top-1分類精度,超過谷歌同類模型(遷移學習模式)的精度,且值得注意的是,ML-Images的規模僅為JFT-300M的約1/17。這充分說明了ML-Images的高質量和訓練方法的有效性。詳細對比如下表。

           騰訊又添 AI 開源專案!騰訊 AI Lab 開源業內最大規模多標籤影像資料集

騰訊AI Lab此次開源的“Tencent ML-Images”專案,展現了騰訊在人工智慧基礎能力建設方面的努力,以及希望通過基礎能力的開放促進行業共同發展的願景。

“Tencent
ML-Images”專案的深度學習模型,目前已在騰訊多項業務中發揮重要作用,如“天天快報”的影像質量評價與推薦功能。

如下圖所示,天天快報新聞封面影像的質量得到明顯提高。

                                                          優化前與優化後


          騰訊又添 AI 開源專案!騰訊 AI Lab 開源業內最大規模多標籤影像資料集

此外,騰訊AI Lab團隊還將基於Tencent ML-Images的ResNet-101模型遷移到很多其他視覺任務,包括影像物體檢測,影像語義分割,視訊物體分割,視訊物體跟蹤等。這些視覺遷移任務進一步驗證了該模型的強大視覺表示能力和優異的泛化效能。“Tencent ML-Images”專案未來還將在更多視覺相關的產品中發揮重要作用。

自2016年騰訊首次在GitHub上釋出開源專案(https://github.com/Tencent),目前已累積開源覆蓋人工智慧、移動開發、小程式等領域的57個專案。為進一步貢獻開源社群,騰訊相繼加入Hyperledger、LF Networking和開放網路基金會,併成為LF深度學習基金會首要創始成員及Linux基金會白金會員。作為騰訊“開放”戰略在技術領域的體現,騰訊開源將繼續對內推動技術研發向共享、複用和開源邁進,向外釋放騰訊研發實力,為國內外開源社群提供技術支援,注入研發活力。

相關文章