題目:
Implement int sqrt(int x).
Compute and return the square root of x, where x is guaranteed to be a non-negative integer.
Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.
Example 1:
Input: 4
Output: 2
Example 2:
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
the decimal part is truncated, 2 is returned.
思路:
牛頓迭代法, 導數方程 f`(x)*x`=y`, 任何函式f(x)=y,求解某個y=n,均可以轉化為 f(x)-n=0,
此後就可以用牛頓迭代法,不斷逼近實際待求x值。
牛頓迭代共識:f`(x_pre)x_pre+x_pre=x_cur
應用: 迭代思想,類似於 動態規劃思想,pre==>cur,進行動態推斷處理
class Solution:
def mySqrt(self, x):
"""
:type x: int
:rtype: int
"""
r=x/2+1
while r*r-x>1e-10:
r=(r+x/r)/2
# print(r*r-x)