《機器學習實戰》基於樸素貝葉斯分類演算法構建文字分類器的Python實現

Thinkgamer_gyt發表於2015-08-22
============================================================================================
《機器學習實戰》系列部落格是博主閱讀《機器學習實戰》這本書的筆記,包含對其中演算法的理解和演算法的Python程式碼實現

另外博主這裡有機器學習實戰這本書的所有演算法原始碼和演算法所用到的原始檔,有需要的留言
============================================================================================
附:之所以成為樸素貝葉斯是因為其假設了各個特徵之間是獨立的


關於樸素貝葉斯分類演算法的理解請參考:http://blog.csdn.net/gamer_gyt/article/details/47205371

Python程式碼實現:

#encoding:utf-8

from numpy import *

#詞表到向量的轉換函式
def loadDataSet():
    postingList = [['my','dog','has','flea','problems','help','please'],
                   ['maybe','not','take','him','to','dog','park','stupid'],
                   ['my','dalmation','is','so','cute','I','love','him'],
                   ['stop','posting','stupid','worthless','garbage'],
                   ['mr','licks','ate','my','steak','how','to','stop','him'],
                   ['quit','buying','worthless','dog','food','stupid']]
    classVec = [0,1,0,1,0,1]      #1,侮辱  0,正常
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  #呼叫set方法,建立一個空集
    for document in dataSet:
        vocabSet = vocabSet | set(document)     #建立兩個集合的並集
    return list(vocabSet)
'''
def setOfWords2Vec(vocabList,inputSet):
    returnVec = [0]*len(vocabList)   #建立一個所含元素都為0的向量
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print "the word:%s is not in my Vocabulary" % word
    return returnVec
'''

def bagOfWords2VecMN(vocabList,inputSet):
    returnVec = [0]*len(vocabList)   #建立一個所含元素都為0的向量
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec


#樸素貝葉斯分類器訓練集
def trainNB0(trainMatrix,trainCategory):  #傳入引數為文件矩陣,每篇文件類別標籤所構成的向量
    numTrainDocs = len(trainMatrix)      #文件矩陣的長度
    numWords = len(trainMatrix[0])       #第一個文件的單詞個數
    pAbusive = sum(trainCategory)/float(numTrainDocs)  #任意文件屬於侮辱性文件概率
    #p0Num = zeros(numWords);p1Num = zeros(numWords)        #初始化兩個矩陣,長度為numWords,內容值為0
    p0Num = ones(numWords);p1Num = ones(numWords)        #初始化兩個矩陣,長度為numWords,內容值為1
    #p0Denom = 0.0;p1Denom = 0.0                         #初始化概率
    p0Denom = 2.0;p1Denom = 2.0 
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num +=trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num +=trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    #p1Vect = p1Num/p1Denom #對每個元素做除法
    #p0Vect = p0Num/p0Denom
    p1Vect = log(p1Num/p1Denom)
    p0Vect = log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive

#樸素貝葉斯分類函式
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)   #元素相乘
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1>p0:
        return 1
    else:
        return 0

def testingNB():
    listOPosts,listClasses = loadDataSet()   #產生文件矩陣和對應的標籤
    myVocabList = createVocabList(listOPosts) #建立並集
    trainMat = []   #建立一個空的列表
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))  #使用詞向量來填充trainMat列表
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))  #訓練函式
    testEntry = ['love','my','dalmation']   #測試文件列表
    thisDoc = array(setOfWords2Vec(myVocabList,testEntry)) #宣告矩陣
    print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid','garbage']
    thisDoc = array(setOfWords2Vec(myVocabList,testEntry))    #宣告矩陣
    print testEntry,'classified as:',classifyNB(thisDoc,p0V,p1V,pAb)


呼叫方式:

進入該檔案所在目錄,輸入python,執行

>>>import bayes

>>>bayes.testingNB()

相關文章