題意
一個打字機,有 \(1, 0\) 和 \(B\)。
其中 \(B\) 代表退格。
求操作長度為 \(n\),能打出字串 \(s\) 的方案數。
\(n \le 5 \times 10 ^ 3\)
Sol
我有一個 \(O(n \log n)\) 的做法。
但是還沒調出來,先鴿了。
考慮 \(f_{i, j}\) 表示現在操作長度為 \(i\),匹配了 \(j\) 位。
不難發現:
\[f_{i, j} = \begin{cases}
2 \times f_{i - 1, j + 1}\\
f_{i - 1, j - 1}
\end{cases}
\]
做完了。