【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

狸貓技術窩發表於2019-05-06

公眾號:狸貓技術窩
作者:原子彈大俠,阿里巴巴高階技術專家

目錄 (1)單塊架構

(2)初步的高可用架構

(3)千萬級使用者量的壓力預估

(4)伺服器壓力預估

(5)業務垂直拆分

(6)用分散式快取抗下讀請求

(7)基於資料庫主從架構做讀寫分離

(8)總結

本文將會從一個大型的網站發展歷程出發,一步一步的探索這個網站的架構是如何從單體架構,演化到分散式架構,然後演化到高併發架構的。

(1)單塊架構

一般一個網站剛開始建立的時候,使用者量是很少的,大概可能就幾萬或者幾十萬的使用者量,每天活躍的使用者可能就幾百或者幾千個。

這個時候一般網站架構都是採用單體架構來設計的,總共就部署3臺伺服器,1臺應用伺服器,1臺資料庫伺服器,1臺圖片伺服器。

研發團隊通常都在10人以內,就是在一個單塊應用裡寫程式碼,然後寫好之後合併程式碼,接著就是直接線上上的應用伺服器上釋出。很可能就是手動把應用伺服器上的Tomcat給關掉,然後替換系統的程式碼war包,接著重新啟動Tomcat。

資料庫一般就部署在一臺獨立的伺服器上,存放網站的全部核心資料。

然後在另外一臺獨立的伺服器上部署NFS作為圖片伺服器,存放網站的全部圖片。應用伺服器上的程式碼會連線以及運算元據庫以及圖片伺服器。如下圖所示:

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

(2)初步的高可用架構

但是這種純單塊系統架構下,有高可用問題存在,最大的問題就是應用伺服器可能會故障,或者是資料庫可能會故障

所以在這個時期,一般稍微預算充足一點的公司,都會做一個初步的高可用架構出來。

對於應用伺服器而言,一般會叢集化部署。當然所謂的叢集化部署,在初期使用者量很少的情況下,其實一般也就是部署兩臺應用伺服器而已,然後前面會放一臺伺服器部署負載均衡裝置,比如說LVS,均勻的把使用者請求打到兩臺應用伺服器上去。

如果此時某臺應用伺服器故障了,還有另外一臺應用伺服器是可以使用的,這樣就避免了單點故障問題。如下圖所示:

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

對於資料庫伺服器而言,此時一般也會使用主從架構,部署一臺從庫來從主庫同步資料,這樣一旦主庫出現問題,可以迅速使用從庫繼續提供資料庫服務,避免資料庫故障導致整個系統都徹底故障不可用。如下圖:

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

(3)千萬級使用者量的壓力預估

這個假設這個網站預估的使用者數是1000萬,那麼根據28法則,每天會來訪問這個網站的使用者佔到20%,也就是200萬使用者每天會過來訪問。

通常假設平均每個使用者每次過來會有30次的點選,那麼總共就有6000萬的點選(PV)。

每天24小時,根據28法則,每天大部分使用者最活躍的時間集中在(24小時 * 0.2)≈ 5小時內,而大部分使用者指的是(6000萬點選 * 0.8 ≈ 5000萬點選)

也就是說,在5小時內會有5000萬點選進來。

換算下來,在那5小時的活躍訪問期內,大概每秒鐘會有3000左右的請求量,然後這5小時中可能又會出現大量使用者集中訪問的高峰時間段。

比如在集中半個小時內大量使用者湧入形成高峰訪問。根據線上經驗,一般高峰訪問是活躍訪問的2~3倍。假設我們按照3倍來計算,那麼5小時內可能有短暫的峰值會出現每秒有10000左右的請求。

(4)伺服器壓力預估

大概知道了高峰期每秒鐘可能會有1萬左右的請求量之後,來看一下系統中各個伺服器的壓力預估。

一般來說一臺虛擬機器部署的應用伺服器,上面放一個Tomcat,也就支撐最多每秒幾百的請求。

按每秒支撐500的請求來計算,那麼支撐高峰期的每秒1萬訪問量,需要部署20臺應用服務。

而且應用伺服器對資料庫的訪問量又是要翻幾倍的,因為假設一秒鐘應用伺服器接收到1萬個請求,但是應用伺服器為了處理每個請求可能要涉及到平均3~5次資料庫的訪問。

按照3次資料庫訪問來算,那麼每秒會對資料庫形成3萬次的請求。

按照一臺資料庫伺服器最高支撐每秒5000左右的請求量,此時需要通過6臺資料庫伺服器才能支撐每秒3萬左右的請求。

圖片伺服器的壓力同樣會很大,因為需要大量的讀取圖片展示頁面,這個不太好估算,但是大致可以推算出來每秒至少也會有幾千次請求,因此也需要多臺圖片伺服器來支撐圖片訪問的請求。

(5)業務垂直拆分

一般來說在這個階段要做的第一件事兒就是業務的垂直拆分

因為如果所有業務程式碼都混合在一起部署,會導致多人協作開發時難以維護。在網站到了千萬級使用者的時候,研發團隊一般都有幾十人甚至上百人。

所以這時如果還是在一個單塊系統裡做開發,是一件非常痛苦的事情,此時需要做的就是進行業務的垂直拆分,把一個單塊系統拆分為多個業務系統,然後一個小團隊10個人左右就專門負責維護一個業務系統。如下圖

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

(6)分散式快取扛下讀請求

這個時候應用伺服器層面一般沒什麼大問題,因為無非就是加機器就可以抗住更高的併發請求。

現在估算出來每秒鐘是1萬左右的請求,部署個二三十臺機器就沒問題了。

但是目前上述系統架構中壓力最大的,其實是資料庫層面 ,因為估算出來可能高峰期對資料庫的讀寫併發會有3萬左右的請求。

此時就需要引入分散式快取來抗下對資料庫的讀請求壓力了,也就是引入Redis叢集。

一般來說對資料庫的讀寫請求也大致遵循28法則,所以每秒3萬的讀寫請求中,大概有2.4萬左右是讀請求

這些讀請求基本上90%都可以通過分散式快取叢集來抗下來,也就是大概2萬左右的讀請求可以通過 Redis叢集來抗住。

我們完全可以把熱點的、常見的資料都在Redis叢集裡放一份作為快取,然後對外提供快取服務。

在讀資料的時候優先從快取裡讀,如果快取裡沒有,再從資料庫裡讀取。這樣2萬讀請求就落到Redis上了,1萬讀寫請求繼續落在資料庫上。

Redis一般單臺伺服器抗每秒幾萬請求是沒問題的,所以Redis叢集一般就部署3臺機器,抗下每秒2萬讀請求是絕對沒問題的。如下圖所示:

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

(7)基於資料庫主從架構做讀寫分離

此時資料庫伺服器還是存在每秒1萬的請求,對於單臺伺服器來說壓力還是過大。

但是資料庫一般都支援主從架構,也就是有一個從庫一直從主庫同步資料過去。此時可以基於主從架構做讀寫分離。

也就是說,每秒大概6000寫請求是進入主庫,大概還有4000個讀請求是在從庫上去讀,這樣就可以把1萬讀寫請求壓力分攤到兩臺伺服器上去。

這麼分攤過後,主庫每秒最多6000寫請求,從庫每秒最多4000讀請求,基本上可以勉強把壓力給抗住。如下圖:

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

(8)總結

本文主要是探討在千萬級使用者場景下的大型網站的高併發架構設計,也就是預估出了千萬級使用者的訪問壓力以及對應的後臺系統為了要抗住高併發,在業務系統、快取、資料庫幾個層面的架構設計以及抗高併發的分析。

但是要記住,大型網站架構中共涉及的技術遠遠不止這些,還包括了MQ、CDN、靜態化、分庫分表、NoSQL、搜尋、分散式檔案系統、反向代理,等等很多話題,但是本文不能一一涉及,主要是在高併發這個角度分析一下系統如何抗下每秒上萬的請求。

END

長按下圖二維碼,即刻關注【狸貓技術窩】 阿里、京東、美團、位元組跳動 頂尖技術專家坐鎮 為IT人打造一個 “有溫度” 的技術窩!

【乾貨走一波】千萬級使用者的大型網站,應該如何設計其高併發架構?

相關文章