《深度學習——Andrew Ng》第五課第一週程式設計作業_1_Building a RNN Step by Step

sinat_34022298發表於2018-04-28

平時大多數時間做圖片相關的事情,所以本來沒計劃學習RNN的;後來想了想,反正都學到了CNN,就再堅持一下,把RNN也看了把,看完之後感覺很神奇,和CNN不一樣的演算法,感覺像是人的不同思維方式,感想吳大大的深入淺出,講課和作業都很好。

序列模型總共三週:

  • 第一週 迴圈序列模型
  • 第二週 自然語言處理與詞嵌入
  • 第三週 序列模型和注意力機制

RNN

關於RNN網路網上有很多教程,我就用課上的筆記做一個概要的總結吧。這裡的RNN是迴圈神經網路(Recurrent Neural Network)。

“每次的輸出Y,與前一輪a和本輪x有關,而輸給下一輪神經元的a也和前一輪a和本輪x有關。”這個很像我們說話或者閱讀的前後結合思維方式,所以RNN是這種前後 以時間順序連線的一個個神經元。
這裡寫圖片描述

時間序列模型有多種結構,如下圖:
這裡寫圖片描述

  • 一對一的;
  • 一對多:音樂生成模型;
  • 多對多:1、語句詞義詞性檢測;2、不同語言翻譯。

RNN程式

像之前構建 DNN 網路一樣,這個作業的重點在於前向、後向傳播(主要是求導)的計算。

import numpy as np
from rnn_utils import *


# GRADED FUNCTION: rnn_cell_forward
def rnn_cell_forward(xt, a_prev, parameters):
    """
    Implements a single forward step of the RNN-cell as described in Figure (2)

    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
    """

    # Retrieve parameters from "parameters"
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    ### START CODE HERE ### (≈2 lines)
    # compute next activation state using the formula given above
    a_next = np.tanh( np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba )
    # compute output of the current cell using the formula given above
    yt_pred = softmax( np.dot(Wya, a_next) + by )
    ### END CODE HERE ###

    # store values you need for backward propagation in cache
    cache = (a_next, a_prev, xt, parameters)

    return a_next, yt_pred, cache


# GRADED FUNCTION: rnn_forward
def rnn_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network described in Figure (3).

    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of caches, x)
    """

    # Initialize "caches" which will contain the list of all caches
    caches = []

    # Retrieve dimensions from shapes of x and Wy
    n_x, m, T_x = x.shape                   # n_x:每個樣本每個時刻的向量長度; m:樣本個數; T_x:時間維度
    n_y, n_a = parameters["Wya"].shape      # 引數是共享的,所以Wya只有兩個維度

    ### START CODE HERE ###

    # initialize "a" and "y" with zeros (≈2 lines)
    a = np.zeros((n_a, m, T_x))
    y_pred = np.zeros((n_y, m, T_x))

    # Initialize a_next (≈1 line)
    a_next = a0

    # loop over all time-steps
    for t in range(T_x):
        # Update next hidden state, compute the prediction, get the cache (≈1 line)
        a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t], a_next, parameters)
        # Save the value of the new "next" hidden state in a (≈1 line)
        a[:,:,t] = a_next
        # Save the value of the prediction in y (≈1 line)
        y_pred[:,:,t] = yt_pred
        # Append "cache" to "caches" (≈1 line)
        caches.append(cache)

    ### END CODE HERE ###

    # store values needed for backward propagation in cache
    caches = (caches, x)

    return a, y_pred, caches



# GRADED FUNCTION: lstm_cell_forward
def lstm_cell_forward(xt, a_prev, c_prev, parameters):
    """
    Implement a single forward step of the LSTM-cell as described in Figure (4)

    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                        Wi -- Weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
                        bi -- Bias of the save gate, numpy array of shape (n_a, 1)
                        Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                        bc --  Bias of the first "tanh", numpy array of shape (n_a, 1)
                        Wo -- Weight matrix of the focus gate, numpy array of shape (n_a, n_a + n_x)
                        bo --  Bias of the focus gate, numpy array of shape (n_a, 1)
                        Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    c_next -- next memory state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters)

    Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilda),
          c stands for the memory value
    """

    # Retrieve parameters from "parameters"
    Wf = parameters["Wf"]
    bf = parameters["bf"]
    Wi = parameters["Wi"]
    bi = parameters["bi"]
    Wc = parameters["Wc"]
    bc = parameters["bc"]
    Wo = parameters["Wo"]
    bo = parameters["bo"]
    Wy = parameters["Wy"]
    by = parameters["by"]

    # Retrieve dimensions from shapes of xt and Wy
    n_x, m = xt.shape
    n_y, n_a = Wy.shape

    ### START CODE HERE ###
    # Concatenate a_prev and xt (≈3 lines)
    concatenate_ap_xt = np.concatenate((a_prev, xt), axis=0)
    # concatenate_ap_xt = np.zeros([n_a + n_x, m])
    # concatenate_ap_xt[: n_a, :] = a_prev
    # concatenate_ap_xt[n_a:, :] = xt


    # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines)
    ft = sigmoid(np.dot(Wf, concatenate_ap_xt) + bf)
    it = sigmoid(np.dot(Wi, concatenate_ap_xt) + bi)
    ot = sigmoid(np.dot(Wo, concatenate_ap_xt) + bo)
    cct = np.tanh(np.dot(Wc, concatenate_ap_xt) + bc)
    c_next = ft * c_prev + it * cct
    a_next = ot * np.tanh(c_next)

    # Compute prediction of the LSTM cell (≈1 line)
    yt_pred = softmax(np.dot(Wy,a_next) + by)

    ### END CODE HERE ###

    # store values needed for backward propagation in cache
    cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters)

    return a_next, c_next, yt_pred, cache


# GRADED FUNCTION: lstm_forward
def lstm_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3).

    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                        Wi -- Weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
                        bi -- Bias of the save gate, numpy array of shape (n_a, 1)
                        Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                        bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
                        Wo -- Weight matrix of the focus gate, numpy array of shape (n_a, n_a + n_x)
                        bo -- Bias of the focus gate, numpy array of shape (n_a, 1)
                        Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of all the caches, x)
    """

    # Initialize "caches", which will track the list of all the caches
    caches = []

    ### START CODE HERE ###
    # Retrieve dimensions from shapes of xt and Wy (≈2 lines)
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wy"].shape                  # 引數是共享的,所以Wya只有兩個維度

    # initialize "a", "c" and "y" with zeros (≈3 lines)
    a = np.zeros((n_a, m, T_x))
    c = np.zeros((n_a, m, T_x))
    y = np.zeros((n_y, m, T_x))       # 輸出是有m個的,即每個樣本對應一個輸出


    # Initialize a_next and c_next (≈2 lines)
    a_next = a0
    c_next = np.zeros((n_a, m))         # 為每個樣本定義一個c,需要在T維度上進行傳播,所以只有兩維,可以看做 C[:,:,0]


    # loop over all time-steps
    for t in range(T_x):
        # Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line)
        a_next, c_next, yt_pred, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, parameters=parameters)       # 對每個t時刻,求這個時刻所有樣本的lstmcell
        # Save the value of the new "next" hidden state in a (≈1 line)
        a[:,:,t] = a_next
        # Save the value of the prediction in y (≈1 line)
        y[:,:,t] = yt_pred
        # Save the value of the next cell state (≈1 line)
        c[:,:,t] = c_next
        # Append the cache into caches (≈1 line)
        caches.append(cache)

    ### END CODE HERE ###

    # store values needed for backward propagation in cache
    caches = (caches, x)

    return a, y, c, caches



def rnn_cell_backward(da_next, cache):
    """
    Implements the backward pass for the RNN-cell (single time-step).

    Arguments:
    da_next -- Gradient of loss with respect to next hidden state
    cache -- python dictionary containing useful values (output of rnn_step_forward())

    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradients of input data, of shape (n_x, m)
                        da_prev -- Gradients of previous hidden state, of shape (n_a, m)
                        dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                        dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                        dba -- Gradients of bias vector, of shape (n_a, 1)
    """

    # Retrieve values from cache
    (a_next, a_prev, xt, parameters) = cache

    # Retrieve values from parameters
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    ### START CODE HERE ###
    # compute the gradient of tanh with respect to a_next (≈1 line)
    dtanh = (1 - a_next * a_next) * da_next

    # compute the gradient of the loss with respect to Wax (≈2 lines)
    dWax = np.dot(dtanh, xt.T)
    dxt = np.dot(Wax.T, dtanh)

    # compute the gradient with respect to Waa (≈2 lines)
    dWaa = np.dot(dtanh, a_prev.T)
    da_prev = np.dot(Waa.T, dtanh)

    # compute the gradient with respect to b (≈1 line)
    dba = np.sum(dtanh, keepdims=True, axis=-1)

    ### END CODE HERE ###


    # Store the gradients in a python dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}

    return gradients


def rnn_backward(da, caches):
    """
    Implement the backward pass for a RNN over an entire sequence of input data.

    Arguments:
    da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x)
    caches -- tuple containing information from the forward pass (rnn_forward)

    Returns:
    gradients -- python dictionary containing:
                        dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x)
                        da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
                        dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x)
                        dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a)
                        dba -- Gradient w.r.t the bias, of shape (n_a, 1)
    """

    ### START CODE HERE ###

    # Retrieve values from the first cache (t=1) of caches (≈2 lines)
    (caches, x) = caches
    (a1, a0, x1, parameters) = caches[0]

    # Retrieve dimensions from da's and x1's shapes (≈2 lines)
    n_a, m, T_x = da.shape
    n_x, m = x1.shape

    # initialize the gradients with the right sizes (≈6 lines)
    dx = np.zeros([n_x, m, T_x])
    dWax = np.zeros([n_a, n_x])
    dWaa = np.zeros([n_a, n_a])
    dba = np.zeros([n_a, 1])
    da0 = np.zeros([n_a, m])
    da_prevt = np.zeros([n_a, m])

    # Loop through all the time steps
    for t in reversed(range(T_x)):
        # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line)
        gradients = rnn_cell_backward(da[:, :, t] + da_prevt, caches[t])
        # Retrieve derivatives from gradients (≈ 1 line)
        dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients[
            "dWaa"], gradients["dba"]
        # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines)
        dx[:, :, t] = dxt
        dWax += dWaxt
        dWaa += dWaat
        dba += dbat

    # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line)
    da0 = da_prevt
    ### END CODE HERE ###

    # Store the gradients in a python dictionary
    gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa, "dba": dba}

    return gradients


def lstm_cell_backward(da_next, dc_next, cache):
    """
    Implement the backward pass for the LSTM-cell (single time-step).

    Arguments:
    da_next -- Gradients of next hidden state, of shape (n_a, m)
    dc_next -- Gradients of next cell state, of shape (n_a, m)
    cache -- cache storing information from the forward pass

    Returns:
    gradients -- python dictionary containing:
                        dxt -- Gradient of input data at time-step t, of shape (n_x, m)
                        da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
                        dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
                        dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                        dWi -- Gradient w.r.t. the weight matrix of the input gate, numpy array of shape (n_a, n_a + n_x)
                        dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
                        dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
                        dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
                        dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
                        dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
                        dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1)
    """

    # Retrieve information from "cache"
    (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache

    ### START CODE HERE ###
    # Retrieve dimensions from xt's and a_next's shape (≈2 lines)
    n_x, m = xt.shape
    n_a, m = a_next.shape

    # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines)
    dot = da_next * np.tanh(c_next) * ot * (1 - ot)
    dcct = (dc_next * it + ot * (1 - np.square(np.tanh(c_next))) * it * da_next) * (1 - np.square(cct))
    dit = (dc_next * cct + ot * (1 - np.square(np.tanh(c_next))) * cct * da_next) * it * (1 - it)
    dft = (dc_next * c_prev + ot * (1 - np.square(np.tanh(c_next))) * c_prev * da_next) * ft * (1 - ft)

    ## Code equations (7) to (10) (≈4 lines)
    ##dit = None
    ##dft = None
    ##dot = None
    ##dcct = None
    ##
    # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines)
    concat = np.concatenate((a_prev, xt), axis=0).T
    dWf = np.dot(dft, concat)
    dWi = np.dot(dit, concat)
    dWc = np.dot(dcct, concat)
    dWo = np.dot(dot, concat)
    dbf = np.sum(dft, axis=1, keepdims=True)
    dbi = np.sum(dit, axis=1, keepdims=True)
    dbc = np.sum(dcct, axis=1, keepdims=True)
    dbo = np.sum(dot, axis=1, keepdims=True)

    # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines)
    da_prev = np.dot(parameters["Wf"][:, :n_a].T, dft) + np.dot(parameters["Wc"][:, :n_a].T, dcct) + np.dot(
        parameters["Wi"][:, :n_a].T, dit) + np.dot(parameters["Wo"][:, :n_a].T, dot)
    dc_prev = dc_next * ft + ot * (1 - np.square(np.tanh(c_next))) * ft * da_next
    dxt = np.dot(parameters["Wf"][:, n_a:].T, dft) + np.dot(parameters["Wc"][:, n_a:].T, dcct) + np.dot(
        parameters["Wi"][:, n_a:].T, dit) + np.dot(parameters["Wo"][:, n_a:].T, dot)
    ### END CODE HERE ###

    # Save gradients in dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf, "dbf": dbf, "dWi": dWi, "dbi": dbi,
                 "dWc": dWc, "dbc": dbc, "dWo": dWo, "dbo": dbo}

    return gradients


def lstm_backward(da, caches):

        """
        Implement the backward pass for the RNN with LSTM-cell (over a whole sequence).

        Arguments:
        da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x)
        dc -- Gradients w.r.t the memory states, numpy-array of shape (n_a, m, T_x)
        caches -- cache storing information from the forward pass (lstm_forward)

        Returns:
        gradients -- python dictionary containing:
                            dx -- Gradient of inputs, of shape (n_x, m, T_x)
                            da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
                            dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                            dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                            dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
                            dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
                            dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
                            dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
                            dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
                            dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1)
        """

        # Retrieve values from the first cache (t=1) of caches.
        (caches, x) = caches
        (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0]

        ### START CODE HERE ###
        # Retrieve dimensions from da's and x1's shapes (≈2 lines)
        n_a, m, T_x = da.shape
        n_x, m = x1.shape

        # initialize the gradients with the right sizes (≈12 lines)
        dx = np.zeros([n_x, m, T_x])
        da0 = np.zeros([n_a, m])
        da_prevt = np.zeros([n_a, m])
        dc_prevt = np.zeros([n_a, m])
        dWf = np.zeros([n_a, n_a + n_x])
        dWi = np.zeros([n_a, n_a + n_x])
        dWc = np.zeros([n_a, n_a + n_x])
        dWo = np.zeros([n_a, n_a + n_x])
        dbf = np.zeros([n_a, 1])
        dbi = np.zeros([n_a, 1])
        dbc = np.zeros([n_a, 1])
        dbo = np.zeros([n_a, 1])

        # loop back over the whole sequence
        for t in reversed(range(T_x)):
            # Compute all gradients using lstm_cell_backward
            gradients = lstm_cell_backward(da[:,:,t],dc_prevt,caches[t])
            # da_prevt, dc_prevt = gradients['da_prev'], gradients["dc_prev"]
            # Store or add the gradient to the parameters' previous step's gradient
            dx[:,:,t] = gradients['dxt']
            dWf = dWf+gradients['dWf']
            dWi = dWi+gradients['dWi']
            dWc = dWc+gradients['dWc']
            dWo = dWo+gradients['dWo']
            dbf = dbf+gradients['dbf']
            dbi = dbi+gradients['dbi']
            dbc = dbc+gradients['dbc']
            dbo = dbo+gradients['dbo']
        # Set the first activation's gradient to the backpropagated gradient da_prev.
        da0 = gradients['da_prev']

        ### END CODE HERE ###

        # Store the gradients in a python dictionary
        gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
                    "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}

        return gradients


if __name__ == '__main__':
    np.random.seed(1)
    x = np.random.randn(3, 10, 7)
    a0 = np.random.randn(5, 10)
    Wf = np.random.randn(5, 5 + 3)
    bf = np.random.randn(5, 1)
    Wi = np.random.randn(5, 5 + 3)
    bi = np.random.randn(5, 1)
    Wo = np.random.randn(5, 5 + 3)
    bo = np.random.randn(5, 1)
    Wc = np.random.randn(5, 5 + 3)
    bc = np.random.randn(5, 1)
    Wy = np.random.randn(2, 5)
    by = np.random.randn(2, 1)

    parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}

    a, y, c, caches = lstm_forward(x, a0, parameters)

    da = np.random.randn(5, 10, 4)
    gradients = lstm_backward(da, caches)

    print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
    print("gradients[\"dx\"].shape =", gradients["dx"].shape)
    print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
    print("gradients[\"da0\"].shape =", gradients["da0"].shape)
    print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1])
    print("gradients[\"dWf\"].shape =", gradients["dWf"].shape)
    print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2])
    print("gradients[\"dWi\"].shape =", gradients["dWi"].shape)
    print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1])
    print("gradients[\"dWc\"].shape =", gradients["dWc"].shape)
    print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2])
    print("gradients[\"dWo\"].shape =", gradients["dWo"].shape)
    print("gradients[\"dbf\"][4] =", gradients["dbf"][4])
    print("gradients[\"dbf\"].shape =", gradients["dbf"].shape)
    print("gradients[\"dbi\"][4] =", gradients["dbi"][4])
    print("gradients[\"dbi\"].shape =", gradients["dbi"].shape)
    print("gradients[\"dbc\"][4] =", gradients["dbc"][4])
    print("gradients[\"dbc\"].shape =", gradients["dbc"].shape)
    print("gradients[\"dbo\"][4] =", gradients["dbo"][4])
    print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)

參考

理解 LSTM 網路

相關文章