今年 3 月份,谷歌在 Tensorflow Developer Summit 2019 大會上釋出 TensorFlow 2.0 Alpha 版。作為當前最為流行的深度學習框架,2.0 Alpha 版的正式釋出引人關注。近兩個月,網上已經出現了大量 TensorFlow 2.0 英文教程。在此文章中,機器之心為大家推薦一個持續更新的中文教程,以便大家學習。
雖然,自 TensorFlow 2.0 釋出以來,我們總是能夠聽到「TensorFlow 2.0 就是 keras」、「說的很好,但我用 PyTorch」類似的吐槽。但毋庸置疑,TensorFlow 依然是當前最主流的深度學習框架(感興趣的讀者可檢視機器之心文章:2019 年,TensorFlow 被拉下馬了嗎?)。
整體而言,為了吸引使用者,TensorFlow 2.0 從簡單、強大、可擴充套件三個層面進行了重新設計。特別是在簡單化方面,TensorFlow 2.0 提供更簡化的 API、注重 Keras、結合了 Eager execution。
過去一段時間,機器之心為大家編譯介紹了部分英文教程,例如:
此文章中,機器之心為大家推薦一個持續更新的中文教程,方便大家更系統的學習、使用 TensorFlow 2.0 :
知乎專欄地址:https://zhuanlan.zhihu.com/c_1091021863043624960
Github 專案地址:https://github.com/czy36mengfei/tensorflow2_tutorials_chinese
該教程是 NLP 愛好者 Doit 在知乎上開的一個專欄,由作者從 TensorFlow2.0 官方教程的個人學習復現筆記整理而來。作者將此教程分為了三類:TensorFlow 2.0 基礎教程、TensorFlow 2.0 深度學習實踐、TensorFlow 2.0 基礎網路結構。
以基礎教程為例,作者整理了 Keras 快速入門教程、eager 模式、Autograph 等。目前為止,該中文教程已經包含 20 多篇文章,作者還在持續更新中,感興趣的讀者可以 follow。
該中文教程當前目錄
以下是作者整理的「Keras 快速入門」教程內容。
Keras 快速入門
Keras 是一個用於構建和訓練深度學習模型的高階 API。它可用於快速設計原型、高階研究和生產。
keras 的 3 個優點: 方便使用者使用、模組化和可組合、易於擴充套件
1. 匯入 tf.keras
tensorflow2 推薦使用 keras 構建網路,常見的神經網路都包含在 keras.layer 中 (最新的 tf.keras 的版本可能和 keras 不同)
import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)
2. 構建簡單模型
2.1 模型堆疊
最常見的模型型別是層的堆疊:tf.keras.Sequential 模型
model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
2.2 網路配置
tf.keras.layers 中網路配置:
activation:設定層的啟用函式。此引數由內建函式的名稱指定,或指定為可呼叫物件。預設情況下,系統不會應用任何啟用函式。
kernel_initializer 和 bias_initializer:建立層權重(核和偏差)的初始化方案。此引數是一個名稱或可呼叫物件,預設為 "Glorot uniform" 初始化器。
kernel_regularizer 和 bias_regularizer:應用層權重(核和偏差)的正則化方案,例如 L1 或 L2 正則化。預設情況下,系統不會應用正則化函式。
layers.Dense(32, activation='sigmoid')
layers.Dense(32, activation=tf.sigmoid)
layers.Dense(32, kernel_initializer='orthogonal')
layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))
3. 訓練和評估
3.1 設定訓練流程
構建好模型後,通過呼叫 compile 方法配置該模型的學習流程:
model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.categorical_accuracy])
3.2 輸入 Numpy 資料
import numpy as np
train_x = np.random.random((1000, 72))
train_y = np.random.random((1000, 10))
val_x = np.random.random((200, 72))
val_y = np.random.random((200, 10))
model.fit(train_x, train_y, epochs=10, batch_size=100,
validation_data=(val_x, val_y))
3.3tf.data 輸入資料
dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(32)
dataset = dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()
model.fit(dataset, epochs=10, steps_per_epoch=30,
validation_data=val_dataset, validation_steps=3)
3.4 評估與預測
test_x = np.random.random((1000, 72))
test_y = np.random.random((1000, 10))
model.evaluate(test_x, test_y, batch_size=32)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
test_data = test_data.batch(32).repeat()
model.evaluate(test_data, steps=30)
# predict
result = model.predict(test_x, batch_size=32)
print(result)
4. 構建高階模型
4.1 函式式 api
tf.keras.Sequential 模型是層的簡單堆疊,無法表示任意模型。使用 Keras 函式式 API 可以構建複雜的模型拓撲,例如:
多輸入模型,
多輸出模型,
具有共享層的模型(同一層被呼叫多次),
具有非序列資料流的模型(例如,殘差連線)。
使用函式式 API 構建的模型具有以下特徵:
層例項可呼叫並返回張量。
輸入張量和輸出張量用於定義 tf.keras.Model 例項。
此模型的訓練方式和 Sequential 模型一樣。
input_x = tf.keras.Input(shape=(72,))
hidden1 = layers.Dense(32, activation='relu')(input_x)
hidden2 = layers.Dense(16, activation='relu')(hidden1)
pred = layers.Dense(10, activation='softmax')(hidden2)
model = tf.keras.Model(inputs=input_x, outputs=pred)
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.categorical_crossentropy,
metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
4.2 模型子類化
通過對 tf.keras.Model 進行子類化並定義您自己的前向傳播來構建完全可自定義的模型。在 init 方法中建立層並將它們設定為類例項的屬性。在 call 方法中定義前向傳播
class MyModel(tf.keras.Model):
def __init__(self, num_classes=10):
super(MyModel, self).__init__(name='my_model')
self.num_classes = num_classes
self.layer1 = layers.Dense(32, activation='relu')
self.layer2 = layers.Dense(num_classes, activation='softmax')
def call(self, inputs):
h1 = self.layer1(inputs)
out = self.layer2(h1)
return out
def compute_output_shape(self, input_shape):
shape = tf.TensorShapej(input_shape).as_list()
shape[-1] = self.num_classes
return tf.TensorShape(shape)
model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
loss=tf.keras.losses.categorical_crossentropy,
metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=16, epochs=5)
4.3 自定義層
通過對 tf.keras.layers.Layer 進行子類化並實現以下方法來建立自定義層:
build:建立層的權重。使用 add_weight 方法新增權重。
call:定義前向傳播。
compute_output_shape:指定在給定輸入形狀的情況下如何計算層的輸出形狀。或者,可以通過實現 get_config 方法和 from_config 類方法序列化層。
class MyLayer(layers.Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
shape = tf.TensorShape((input_shape[1], self.output_dim))
self.kernel = self.add_weight(name='kernel1', shape=shape,
initializer='uniform', trainable=True)
super(MyLayer, self).build(input_shape)
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
def compute_output_shape(self, input_shape):
shape = tf.TensorShape(input_shape).as_list()
shape[-1] = self.output_dim
return tf.TensorShape(shape)
def get_config(self):
base_config = super(MyLayer, self).get_config()
base_config['output_dim'] = self.output_dim
return base_config
@classmethod
def from_config(cls, config):
return cls(**config)
model = tf.keras.Sequential(
[
MyLayer(10),
layers.Activation('softmax')
])
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
loss=tf.keras.losses.categorical_crossentropy,
metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=16, epochs=5)
4.4 回撥
callbacks = [
tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(train_x, train_y, batch_size=16, epochs=5,
callbacks=callbacks, validation_data=(val_x, val_y))
5 保持和恢復
5.1 權重儲存
model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')])
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
model.save_weights('./weights/model')
model.load_weights('./weights/model')
model.save_weights('./model.h5')
model.load_weights('./model.h5')
5.2 儲存網路結構
# 序列化成json
import json
import pprint
json_str = model.to_json()
pprint.pprint(json.loads(json_str))
fresh_model = tf.keras.models.model_from_json(json_str)
# 保持為yaml格式 #需要提前安裝pyyaml
yaml_str = model.to_yaml()
print(yaml_str)
fresh_model = tf.keras.models.model_from_yaml(yaml_str)
5.3 儲存整個模型
model = tf.keras.Sequential([
layers.Dense(10, activation='softmax', input_shape=(72,)),
layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
model.save('all_model.h5')
model = tf.keras.models.load_model('all_model.h5')
6. 將 keras 用於 Estimator
Estimator API 用於針對分散式環境訓練模型。它適用於一些行業使用場景,例如用大型資料集進行分散式訓練並匯出模型以用於生產
model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
layers.Dense(10,activation='softmax')])
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
estimator = tf.keras.estimator.model_to_estimator(model)