netty原始碼分析-執行緒池
眾所周知,netty是一款效能非常出色的nio框架,作為dubbo等眾多優秀專案底層的資料傳輸框架,研究吃透它,對於我們今後的開發是絕對有益無害的,所以從今天開始我們就研究netty。本次分析基於netty4,請諸位看官自行下載jar包及原始碼。好了,我們今天說一下netty的執行緒池。
我們經常會看到netty的程式碼中有下面這一句。
EventLoopGroup workerGroup = new NioEventLoopGroup();
簡單的new了一個事件的處理組(也沒看官方怎麼解釋這個概念的,自己定義了一下吧,勿噴)。但他裡面所作的事情卻遠不止看到的這麼簡單。這也是我們閱讀原始碼的一個準則,不要忽略每一個你認為的不起眼的程式碼,也許他的作用是舉足輕重的。他的具體實現
### io.netty.channel.nio.NioEventLoopGroup#NioEventLoopGroup()
/**
* Create a new instance using the default number of threads, the default {@link ThreadFactory} and
* the {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.
*/
public NioEventLoopGroup() {
this(0);
}
### io.netty.channel.MultithreadEventLoopGroup#MultithreadEventLoopGroup(int, java.util.concurrent.Executor, java.lang.Object...)
/**
* @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, Executor, Object...)
*/
protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
}
### MultithreadEventLoopGroup.java:39
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}
### 表示程式碼出自的類及方法名,因為他們的相關性很大,所以我就放到同一個程式碼塊中,防止思維跳躍太大,大家跟不上節奏。雖然現在初始化的時候設定了執行緒數為0,但是並不是最後的結果,經過了諸多的建構函式的呼叫及父類建構函式的引用,在這裡做了一個轉化,當為0時,會取DEFAULT_EVENT_LOOP_THREADS的值,而他的值,他取的是,如果設定io.netty.eventLoopThreads的值就取這個值,沒有設定的話,會取預設值可用核數的兩倍,同1比較去一個最大的進行賦值。最後我們到達了最好的建構函式
### io.netty.util.concurrent.MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, java.util.concurrent.Executor, io.netty.util.concurrent.EventExecutorChooserFactory, java.lang.Object...)
/**
* Create a new instance.
*
* @param nThreads the number of threads that will be used by this instance.
* @param executor the Executor to use, or {@code null} if the default should be used.
* @param chooserFactory the {@link EventExecutorChooserFactory} to use.
* @param args arguments which will passed to each {@link #newChild(Executor, Object...)} call
*/
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
if (nThreads <= 0) {
throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
}
if (executor == null) { //如何executor為空,那麼設定預設執行器為ThreadPerTaskExecutor
executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
}
children = new EventExecutor[nThreads]; //MultithreadEventExecutorGroup是一個總的管理的類,具體和執行緒相關的都交給他的children進行處理,是一個EventExecutor的陣列
for (int i = 0; i < nThreads; i ++) {
boolean success = false;
try {
children[i] = newChild(executor, args); //初始化每一個EventExecutor的例項,下面會有詳細解釋
success = true;
} catch (Exception e) {
// TODO: Think about if this is a good exception type
throw new IllegalStateException("failed to create a child event loop", e);
} finally {
if (!success) {
for (int j = 0; j < i; j ++) {
children[j].shutdownGracefully();
}
for (int j = 0; j < i; j ++) {
EventExecutor e = children[j];
try {
while (!e.isTerminated()) {
e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
}
} catch (InterruptedException interrupted) {
// Let the caller handle the interruption.
Thread.currentThread().interrupt();
break;
}
}
}
}
}
chooser = chooserFactory.newChooser(children); //建立執行緒的選擇器,選擇是有哪個執行緒來處理
final FutureListener<Object> terminationListener = new FutureListener<Object>() {
@Override
public void operationComplete(Future<Object> future) throws Exception {
if (terminatedChildren.incrementAndGet() == children.length) {
terminationFuture.setSuccess(null);
}
}
};
for (EventExecutor e: children) {
e.terminationFuture().addListener(terminationListener);
}
Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
Collections.addAll(childrenSet, children);
readonlyChildren = Collections.unmodifiableSet(childrenSet); //將這些子處理器設定為只讀,不能新增
}
在上面的程式碼中都有關鍵步驟的註釋,總的來說就是最後的髒活累活都不是這個Group乾的,都交給自己內部的children來幹,都交給EventExecutor來幹,我們看一下這個EventExecutor是如何例項化的
### io.netty.channel.nio.NioEventLoopGroup#newChild
@Override
protected EventLoop newChild(Executor executor, Object... args) throws Exception {
return new NioEventLoop(this, executor, (SelectorProvider) args[0],
((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
}
### io.netty.channel.nio.NioEventLoop#NioEventLoop
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
if (selectorProvider == null) {
throw new NullPointerException("selectorProvider");
}
if (strategy == null) {
throw new NullPointerException("selectStrategy");
}
provider = selectorProvider;
final SelectorTuple selectorTuple = openSelector();
selector = selectorTuple.selector;
unwrappedSelector = selectorTuple.unwrappedSelector;
selectStrategy = strategy;
}
EventExecutor是使用NioEventLoop進行初始化的,這個NioEventLoop是SingleThreadEventLoop的子類,所以super呼叫的是SingleThreadEventLoop的構造方法
/**
* Create a new instance
*
* @param parent the {@link EventExecutorGroup} which is the parent of this instance and belongs to it
* @param executor the {@link Executor} which will be used for executing
* @param addTaskWakesUp {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the
* executor thread
* @param maxPendingTasks the maximum number of pending tasks before new tasks will be rejected.
* @param rejectedHandler the {@link RejectedExecutionHandler} to use.
*/
protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor,
boolean addTaskWakesUp, int maxPendingTasks,
RejectedExecutionHandler rejectedHandler) {
super(parent);
this.addTaskWakesUp = addTaskWakesUp;
this.maxPendingTasks = Math.max(16, maxPendingTasks);
this.executor = ObjectUtil.checkNotNull(executor, "executor");
taskQueue = newTaskQueue(this.maxPendingTasks); //設定任務的處理佇列,後續任務會新增到這裡面
rejectedExecutionHandler = ObjectUtil.checkNotNull(rejectedHandler, "rejectedHandler");
}
OK,每一個處理子事件處理器都會有一個任務的佇列。目前為止執行緒池的初始化就告一段落了,感覺沒過癮,我們們就下一篇見。
相關文章
- 執行緒池原始碼分析執行緒原始碼
- Netty原始碼解析一——執行緒池模型之執行緒池NioEventLoopGroupNetty原始碼執行緒模型OOP
- dubbo原始碼-執行緒池分析原始碼執行緒
- 執行緒池之ThreadPoolExecutor執行緒池原始碼分析筆記執行緒thread原始碼筆記
- 執行緒池之ScheduledThreadPoolExecutor執行緒池原始碼分析筆記執行緒thread原始碼筆記
- 詳解Java執行緒池的ctl(執行緒池控制狀態)【原始碼分析】Java執行緒原始碼
- 執行緒池原始碼探究執行緒原始碼
- Python執行緒池ThreadPoolExecutor原始碼分析Python執行緒thread原始碼
- jdk1.8 執行緒池部分原始碼分析JDK執行緒原始碼
- Netty原始碼分析之Reactor執行緒模型詳解Netty原始碼React執行緒模型
- JUC(4)---java執行緒池原理及原始碼分析Java執行緒原始碼
- Java排程執行緒池ScheduledThreadPoolExecutor原始碼分析Java執行緒thread原始碼
- 原始碼|從序列執行緒封閉到物件池、執行緒池原始碼執行緒物件
- JDK執行緒池原始碼研究JDK執行緒原始碼
- 執行緒池執行模型原始碼全解析執行緒模型原始碼
- 執行緒池的建立和使用,執行緒池原始碼初探(篇一)執行緒原始碼
- 使用 Executors,ThreadPoolExecutor,建立執行緒池,原始碼分析理解thread執行緒原始碼
- Android高併發問題處理和執行緒池ThreadPool執行緒池原始碼分析Android執行緒thread原始碼
- Java執行緒池原始碼及原理Java執行緒原始碼
- java執行緒池原始碼一窺Java執行緒原始碼
- [10]elasticsearch原始碼深入分析——執行緒池的封裝Elasticsearch原始碼執行緒封裝
- 從原始碼角度分析建立執行緒池究竟有哪些方式原始碼執行緒
- JUC之執行緒池基礎與簡單原始碼分析執行緒原始碼
- 從原始碼的角度解析執行緒池執行原理原始碼執行緒
- 深入Java原始碼理解執行緒池原理Java原始碼執行緒
- Java原始碼解析 - ThreadPoolExecutor 執行緒池Java原始碼thread執行緒
- Java原始碼解析 ThreadPoolExecutor 執行緒池Java原始碼thread執行緒
- Java執行緒池ThreadPoolExecutor原始碼解析Java執行緒thread原始碼
- Java 執行緒池執行原理分析Java執行緒
- netty原始碼分析之揭開reactor執行緒的面紗(一)Netty原始碼React執行緒
- netty原始碼分析之揭開reactor執行緒的面紗(二)Netty原始碼React執行緒
- netty原始碼分析之揭開reactor執行緒的面紗(三)Netty原始碼React執行緒
- 執行緒池的實現程式碼分析執行緒
- netty reactor執行緒模型分析NettyReact執行緒模型
- Java併發之執行緒池ThreadPoolExecutor原始碼分析學習Java執行緒thread原始碼
- JAVA併發程式設計:執行緒池ThreadPoolExecutor原始碼分析Java程式設計執行緒thread原始碼
- 深入淺出Java執行緒池:原始碼篇Java執行緒原始碼
- quartz執行緒管理的原始碼分析quartz執行緒原始碼