安裝cTex並建立第一個tex程式
環境要求:Microsoft Windows
下載地址為:
http://www.ctex.org/CTeXDownload
安裝方法:直接執行.exe檔案
第一個tex程式:
/documentclass{article} /title{A general demo} /author{Chao Zhong} /date{August 5,2005} /usepackage{makeidx} /usepackage{CJK} /usepackage{graphicx}%加入圖片必須包含的巨集包 /usepackage{color}%%%嘗試彩色圖片 /usepackage{multicol}%分欄混排,單欄雙欄交替 /begin{document} /maketitle /begin{abstract} We consider the following system of difference equations:/( y(k + n) + a_{n - 1} y(k + n - 1) + a_{n - 2} y(k + n - 2) + ... + a_1 y(k + 1) + a_0 y(k) = u(k) /) ,there is $ f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] $ /begin{equation} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{equation} %%%%/end自動編號 /begin{displaymath} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{displaymath} /begin{CJK*}{GBK}{song} 宋記鋒,用了CJK巨集包 /end{CJK*} /end{abstract} /tableofcontents %目錄This comand --tableofcontents---need twice complile /section{Introduction} We shall establish criteria so that system /cite{arnold} has at least three fixed-sign solutions. In addition, estimates on the norms of these solutions will also be provided. The present work is motivated by the fact that boundary value problems model numerous physical phenomena in nature, hence it is of fundamental importance to know the criteria that ensure the existence of at least one meaningful solution.$p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } $ /[p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } /] /columnseprule=1pt /begin{multicols}{2} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /end{multicols} /subsection{Background} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /begin{tabular}{rl} /hline $u(k)mce_marker$f_{u(k)} (k)$// /hline $u(k) = 1(/lambda /ne 1)mce_marker$f_{u(k) = 1(/lambda /ne 1)} (k) =/frac{1}{{/lambda - 1}}$// /hline /end{tabular} %/begin{center} %/includegraphics[scale=0.4]{gradient.eps}%長寬比例都變為原來的0.5倍 %/includegraphics[scale=0.4]{rr.eps}% %/end{center} %如果你當前目錄下有名字為gradient和rr的eps格式圖片檔案,則上述四行 %前面的“%”可以去掉,則生成的pdf文件就能包含這兩張圖片。 %如果你沒有此種格式圖片,可以google兩個下載。要用腦子辦事。 /begin{equation}/label{Mother} /left[ /begin{array}{ccccc} 1 & {p_{n - 1}^{/lambda _1}} & {p_{n - 2}^{/lambda _1}} & /ldots & {p_1 ^{/lambda _1}} // 1 & {p_{n - 1}^{/lambda _2}} & {p_{n - 2}^{/lambda _2}} & /ldots & {p_1 ^{/lambda _2}} // /vdots &/vdots &/vdots & /ddots&/quad// 1 & {p_{n - 1}^{/lambda _j } } & {p_{n - 2}^{/lambda _j } } &/ldots & {p _1^{/lambda _j } } // /end{array} /right]/left[ {/begin{array}{c} {y(k + n)} // {y(k + n - 1)} // /vdots // {y(k + 1)} // /end{array}} /right] = /left[ {/begin{array}{c} {/lambda _1^{k + 1} W_{/lambda _1 } - f_{/lambda _1 } (k + 1)} // {/lambda _2^{k + 1} W_{/lambda _2 } - f_{/lambda _2 } (k + 1)} // /vdots// {/lambda _j^{k + 1} W_{/lambda _j } - f_{/lambda _j } (k + 1)} // /end{array}} /right] /end{equation} /begin{equation} /lambda _i^n + /lambda _i p_1 = a_1 /lambda _i + a_2 /lambda _i^2 + ... + a_{n - 1} /lambda ^{n - 1} /end{equation} /begin{CJK*}{GBK}{song} /columnseprule=1pt /begin{multicols}{2} 恰有智祥大師經過,又請教大師,大師還是搖 頭。其中一人卻說:"常聞大師能卜卦預測,不妨佔這花將來能開幾枝?"大師命另 一人取一個字來,那人適持花工的剪刀在手,隨口說出個"耳"字。大師說:"花是奇花,當開 四枝,但其景不久,必為爾所殘也。"後花開果然如數,但形狀類似牡丹,又類似玫瑰。且 一枝蕊為紅色,一枝蕊為黃色,一枝蕊為白色,一枝蕊為紫色,極盡嬌美。 /end{multicols} /end{CJK*} /begin{thebibliography}{99} /bibitem{arnold} Arnold,/emph{Intermediate Algebra} /end{thebibliography} /end{document}
相關文章
- Mac下安裝Flutter,並建立第一個AppMacFlutterAPP
- TeX Live 安裝
- CTEX安裝必須注意 系統變數 path 被覆蓋變數
- Ubuntu20安裝Truffle框架並部署第一個DAppUbuntu框架APP
- 建立一個程式並呼叫(.net)
- vue-01 安裝與第一個vue程式Vue
- 2 Day DBA-安裝Oracle資料庫並建立一個資料庫-安裝選項Oracle資料庫
- Docker初體驗,建立並匯出第一個本地映象Docker
- PyCharm入門第一步:建立並執行第一個Python專案PyCharmPython
- 【Flask】第一個Flask程式(安裝、執行引數、執行方式)Flask
- apollo1.7.1初探(一)安裝apollo、建立並啟動broker
- 程式設計第一個Apple Watch程式建立專案程式設計APP
- 建立ArcGIS API for JavaScript的第一個示例程式APIJavaScript
- 2 Day DBA-安裝Oracle資料庫並建立一個資料庫-概覽Oracle資料庫
- 建立安裝程式的兩種方法 (轉)
- Flutter 04: 圖解第一個程式遇到的安裝依賴問題Flutter圖解
- 建立CentOS-7虛擬機器並安裝圖形介面CentOS虛擬機
- Xamarin iOS編寫第一個應用程式建立工程iOS
- 安裝HomeBrew提示已安裝並無法解除安裝
- 安裝Windows 7 "安裝程式無法建立新的系統分割槽"Windows
- 軟體安裝程式第一篇(原理)
- Django建立第一個專案Django
- 建立第一個django專案Django
- 學習 django 的安裝 和第一個頁面Django
- TeX/LaTeX on FreeBSD
- 安裝python並使用Python
- 認識並安裝WSL
- MongoDB之安裝並配置MongoDB
- 安裝並配置goldengateGo
- 安裝並設定autotrace
- 照著官網來安裝openstack pike之建立並啟動instance
- 安裝SQLSERVER2000時出現以前的某個程式安裝已在安裝計算機上建立掛起的檔案操作SQLServer計算機
- Flutter 建立第一個專案 for macFlutterMac
- 建立你的第一個JavaScript庫JavaScript
- 使用Android Studio建立第一個Hello World應用程式Android
- 使用C#建立安裝Windows服務程式(乾貨)C#Windows
- 小程式封裝wx.request請求並建立介面管理檔案封裝
- 親手安裝RabbitMq 3.7.2 並安裝Trace外掛MQ