安裝cTex並建立第一個tex程式

鍾超發表於2011-03-19

環境要求:Microsoft Windows

下載地址為:

http://www.ctex.org/CTeXDownload

安裝方法:直接執行.exe檔案

第一個tex程式:

/documentclass{article} /title{A general demo} /author{Chao Zhong} /date{August 5,2005} /usepackage{makeidx} /usepackage{CJK} /usepackage{graphicx}%加入圖片必須包含的巨集包 /usepackage{color}%%%嘗試彩色圖片 /usepackage{multicol}%分欄混排,單欄雙欄交替 /begin{document} /maketitle /begin{abstract} We consider the following system of difference equations:/( y(k + n) + a_{n - 1} y(k + n - 1) + a_{n - 2} y(k + n - 2) + ... + a_1 y(k + 1) + a_0 y(k) = u(k) /) ,there is $ f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] $ /begin{equation} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{equation} %%%%/end自動編號 /begin{displaymath} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{displaymath} /begin{CJK*}{GBK}{song} 宋記鋒,用了CJK巨集包 /end{CJK*} /end{abstract} /tableofcontents %目錄This comand --tableofcontents---need twice complile /section{Introduction} We shall establish criteria so that system /cite{arnold} has at least three fixed-sign solutions. In addition, estimates on the norms of these solutions will also be provided. The present work is motivated by the fact that boundary value problems model numerous physical phenomena in nature, hence it is of fundamental importance to know the criteria that ensure the existence of at least one meaningful solution.$p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } $ /[p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } /] /columnseprule=1pt /begin{multicols}{2} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /end{multicols} /subsection{Background} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /begin{tabular}{rl} /hline $u(k)mce_marker$f_{u(k)} (k)$// /hline $u(k) = 1(/lambda /ne 1)mce_marker$f_{u(k) = 1(/lambda /ne 1)} (k) =/frac{1}{{/lambda - 1}}$// /hline /end{tabular} %/begin{center} %/includegraphics[scale=0.4]{gradient.eps}%長寬比例都變為原來的0.5倍 %/includegraphics[scale=0.4]{rr.eps}% %/end{center} %如果你當前目錄下有名字為gradient和rr的eps格式圖片檔案,則上述四行 %前面的“%”可以去掉,則生成的pdf文件就能包含這兩張圖片。 %如果你沒有此種格式圖片,可以google兩個下載。要用腦子辦事。 /begin{equation}/label{Mother} /left[ /begin{array}{ccccc} 1 & {p_{n - 1}^{/lambda _1}} & {p_{n - 2}^{/lambda _1}} & /ldots & {p_1 ^{/lambda _1}} // 1 & {p_{n - 1}^{/lambda _2}} & {p_{n - 2}^{/lambda _2}} & /ldots & {p_1 ^{/lambda _2}} // /vdots &/vdots &/vdots & /ddots&/quad// 1 & {p_{n - 1}^{/lambda _j } } & {p_{n - 2}^{/lambda _j } } &/ldots & {p _1^{/lambda _j } } // /end{array} /right]/left[ {/begin{array}{c} {y(k + n)} // {y(k + n - 1)} // /vdots // {y(k + 1)} // /end{array}} /right] = /left[ {/begin{array}{c} {/lambda _1^{k + 1} W_{/lambda _1 } - f_{/lambda _1 } (k + 1)} // {/lambda _2^{k + 1} W_{/lambda _2 } - f_{/lambda _2 } (k + 1)} // /vdots// {/lambda _j^{k + 1} W_{/lambda _j } - f_{/lambda _j } (k + 1)} // /end{array}} /right] /end{equation} /begin{equation} /lambda _i^n + /lambda _i p_1 = a_1 /lambda _i + a_2 /lambda _i^2 + ... + a_{n - 1} /lambda ^{n - 1} /end{equation} /begin{CJK*}{GBK}{song} /columnseprule=1pt /begin{multicols}{2} 恰有智祥大師經過,又請教大師,大師還是搖 頭。其中一人卻說:"常聞大師能卜卦預測,不妨佔這花將來能開幾枝?"大師命另 一人取一個字來,那人適持花工的剪刀在手,隨口說出個"耳"字。大師說:"花是奇花,當開 四枝,但其景不久,必為爾所殘也。"後花開果然如數,但形狀類似牡丹,又類似玫瑰。且 一枝蕊為紅色,一枝蕊為黃色,一枝蕊為白色,一枝蕊為紫色,極盡嬌美。 /end{multicols} /end{CJK*} /begin{thebibliography}{99} /bibitem{arnold} Arnold,/emph{Intermediate Algebra} /end{thebibliography} /end{document}

相關文章