安裝cTex並建立第一個tex程式
環境要求:Microsoft Windows
下載地址為:
http://www.ctex.org/CTeXDownload
安裝方法:直接執行.exe檔案
第一個tex程式:
/documentclass{article} /title{A general demo} /author{Chao Zhong} /date{August 5,2005} /usepackage{makeidx} /usepackage{CJK} /usepackage{graphicx}%加入圖片必須包含的巨集包 /usepackage{color}%%%嘗試彩色圖片 /usepackage{multicol}%分欄混排,單欄雙欄交替 /begin{document} /maketitle /begin{abstract} We consider the following system of difference equations:/( y(k + n) + a_{n - 1} y(k + n - 1) + a_{n - 2} y(k + n - 2) + ... + a_1 y(k + 1) + a_0 y(k) = u(k) /) ,there is $ f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] $ /begin{equation} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{equation} %%%%/end自動編號 /begin{displaymath} f_{u(k) = k^m a^k (/lambda = a)} (k) = /frac{1}{{a(_m^{m + 1} )}}[ - k^{m + 1} a^k + /sum/limits_{l = 0}^{m - 1} a (_l^{m + 1} )f_{u(k) = k^l a^k (/lambda = a)} (k)] /end{displaymath} /begin{CJK*}{GBK}{song} 宋記鋒,用了CJK巨集包 /end{CJK*} /end{abstract} /tableofcontents %目錄This comand --tableofcontents---need twice complile /section{Introduction} We shall establish criteria so that system /cite{arnold} has at least three fixed-sign solutions. In addition, estimates on the norms of these solutions will also be provided. The present work is motivated by the fact that boundary value problems model numerous physical phenomena in nature, hence it is of fundamental importance to know the criteria that ensure the existence of at least one meaningful solution.$p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } $ /[p_{n - 1}^{/lambda _i } ,p_{n - 2}^{/lambda _i } ,...,p_1^{/lambda _i } /] /columnseprule=1pt /begin{multicols}{2} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /end{multicols} /subsection{Background} The paper is organized as follows. Section 2 contains the necessary definitions and fixed point theorems. The existence criteria are developed and discussed in Section 3. Finally, examples are presented in Section 4 to illustrate the importance of the results obtained. /begin{tabular}{rl} /hline $u(k)mce_marker$f_{u(k)} (k)$// /hline $u(k) = 1(/lambda /ne 1)mce_marker$f_{u(k) = 1(/lambda /ne 1)} (k) =/frac{1}{{/lambda - 1}}$// /hline /end{tabular} %/begin{center} %/includegraphics[scale=0.4]{gradient.eps}%長寬比例都變為原來的0.5倍 %/includegraphics[scale=0.4]{rr.eps}% %/end{center} %如果你當前目錄下有名字為gradient和rr的eps格式圖片檔案,則上述四行 %前面的“%”可以去掉,則生成的pdf文件就能包含這兩張圖片。 %如果你沒有此種格式圖片,可以google兩個下載。要用腦子辦事。 /begin{equation}/label{Mother} /left[ /begin{array}{ccccc} 1 & {p_{n - 1}^{/lambda _1}} & {p_{n - 2}^{/lambda _1}} & /ldots & {p_1 ^{/lambda _1}} // 1 & {p_{n - 1}^{/lambda _2}} & {p_{n - 2}^{/lambda _2}} & /ldots & {p_1 ^{/lambda _2}} // /vdots &/vdots &/vdots & /ddots&/quad// 1 & {p_{n - 1}^{/lambda _j } } & {p_{n - 2}^{/lambda _j } } &/ldots & {p _1^{/lambda _j } } // /end{array} /right]/left[ {/begin{array}{c} {y(k + n)} // {y(k + n - 1)} // /vdots // {y(k + 1)} // /end{array}} /right] = /left[ {/begin{array}{c} {/lambda _1^{k + 1} W_{/lambda _1 } - f_{/lambda _1 } (k + 1)} // {/lambda _2^{k + 1} W_{/lambda _2 } - f_{/lambda _2 } (k + 1)} // /vdots// {/lambda _j^{k + 1} W_{/lambda _j } - f_{/lambda _j } (k + 1)} // /end{array}} /right] /end{equation} /begin{equation} /lambda _i^n + /lambda _i p_1 = a_1 /lambda _i + a_2 /lambda _i^2 + ... + a_{n - 1} /lambda ^{n - 1} /end{equation} /begin{CJK*}{GBK}{song} /columnseprule=1pt /begin{multicols}{2} 恰有智祥大師經過,又請教大師,大師還是搖 頭。其中一人卻說:"常聞大師能卜卦預測,不妨佔這花將來能開幾枝?"大師命另 一人取一個字來,那人適持花工的剪刀在手,隨口說出個"耳"字。大師說:"花是奇花,當開 四枝,但其景不久,必為爾所殘也。"後花開果然如數,但形狀類似牡丹,又類似玫瑰。且 一枝蕊為紅色,一枝蕊為黃色,一枝蕊為白色,一枝蕊為紫色,極盡嬌美。 /end{multicols} /end{CJK*} /begin{thebibliography}{99} /bibitem{arnold} Arnold,/emph{Intermediate Algebra} /end{thebibliography} /end{document}
相關文章
- Mac下安裝Flutter,並建立第一個AppMacFlutterAPP
- TeX Live 安裝
- Ubuntu20安裝Truffle框架並部署第一個DAppUbuntu框架APP
- CTEX安裝必須注意 系統變數 path 被覆蓋變數
- vue-01 安裝與第一個vue程式Vue
- Docker初體驗,建立並匯出第一個本地映象Docker
- PyCharm入門第一步:建立並執行第一個Python專案PyCharmPython
- 【Flask】第一個Flask程式(安裝、執行引數、執行方式)Flask
- Flutter 04: 圖解第一個程式遇到的安裝依賴問題Flutter圖解
- 建立CentOS-7虛擬機器並安裝圖形介面CentOS虛擬機
- 安裝python並使用Python
- 軟體安裝程式第一篇(原理)
- TeX/LaTeX on FreeBSD
- 安裝ps 並安裝免費外掛
- Django建立第一個專案Django
- 建立第一個django專案Django
- 【Python】【001】建立第一個 FlaskPythonFlask
- 使用C#建立安裝Windows服務程式(乾貨)C#Windows
- 認識並安裝WSL
- 小程式封裝wx.request請求並建立介面管理檔案封裝
- Linux 更新 TeX LiveLinux
- 關於:以前的某個程式安裝已在安裝計算機上建立掛起的檔案操作 解決辦法計算機
- shell批次yum安裝並檢查是否安裝成功
- 使用fnm安裝node,並自定義安裝路徑
- vnc遠端安裝,10個步驟在Linux中遠端安裝VNC並連線VNCLinux
- Flutter 建立第一個專案 for macFlutterMac
- 安裝wordpress後開啟,需要建立一個配置檔案
- yum如何解除安裝已安裝的rpm並安裝本地rpm包
- window下安裝並使用nvm(含解除安裝node、解除安裝nvm、全域性安裝npm)NPM
- Web自動化——介紹與安裝以及第一個web自動化程式(一)Web
- java零基礎入門(jdk安裝配置及第一個java程式的編寫)JavaJDK
- Windows 安裝並配置 MySQL 5.6WindowsMySql
- 滴滴雲安裝並使用 Ansible
- MySQL下載並安裝(Windows)MySqlWindows
- linux 解除安裝node 並重灌Linux
- 如何安裝並設定 Vagrant
- windows安裝mysql以及安裝Navicat Premium並破解的方法WindowsMySqlREM
- yarn的安裝,並使用yarn安裝vue腳手架YarnVue
- Ubuntu下 解除安裝protobuf並安裝指定版本的protobufUbuntu