Tensorflow學習筆記(8)——input_data.py解析
這裡學習一下前面用到的讀取mnist資料庫檔案的程式碼。其實並沒有用到Tensorlfow的東西,但是讀取資料庫檔案是使用Tensorflow程式設計實現功能的基礎,因此歸到Tensorflow的學習筆記中。
這裡需要注意的主要有以下幾點:
1.dense_to_one_hot函式
2.DataSet類中next_batch函式
3.read_data_sets函式
這裡有一個問題:
dense_to_one_hot函式裡
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
#labels_dense.ravel()將整個陣列展成一個一維陣列
#labels_dense.flat[i]即將labels_dense看成一個一維陣列,取其第i個變數
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1#報錯?
return labels_one_hot
註釋有報錯那一行,在整體程式執行的時候並沒有出錯,單獨拿出來就出錯,原因未知,還需要繼續學習。
具體程式碼如下所示,解析如程式碼中註釋所示:
#coding=utf-8
#input_data.py的詳解
#學習讀取資料檔案的方法,以便讀取自己需要的資料庫檔案(二進位制檔案)
"""Functions for downloading and reading MNIST data."""
from __future__ import print_function
import gzip
import os
import urllib
import numpy
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
#判斷目錄檔案是否存在,不存在則建立該目錄
if not os.path.exists(work_directory):
os.mkdir(work_directory)
#需要讀取的檔案路徑
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
#將稠密標籤向量變成稀疏的標籤矩陣
#eg:若原向量的第i行為3,則對應稀疏矩陣的第i行下標為3的值為1,其餘為0
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
#labels_dense.ravel()將整個陣列展成一個一維陣列
#labels_dense.flat[i]即將labels_dense看成一個一維陣列,取其第i個變數
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1#報錯?
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False):
if fake_data:
self._num_examples = 10000
else:
assert images.shape[0] == labels.shape[0], (
"images.shape: %s labels.shape: %s" % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
#若當前訓練讀取的index>總體的images數時,則讀取讀取開始的batch_size大小的資料
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
data_sets.train = DataSet([], [], fake_data=True)
data_sets.validation = DataSet([], [], fake_data=True)
data_sets.test = DataSet([], [], fake_data=True)
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels)
data_sets.validation = DataSet(validation_images, validation_labels)
data_sets.test = DataSet(test_images, test_labels)
return data_sets
相關文章
- Tensorflow學習筆記No.8筆記
- TensorFlow 學習筆記筆記
- TensorFlow學習筆記(二)筆記
- tensorflow學習筆記3筆記
- Tensorflow學習筆記一筆記
- Tensorflow學習筆記二筆記
- TensorFlow Java API 學習筆記JavaAPI筆記
- tensorflow學習筆記——DenseNet筆記SENet
- Tensorflow學習筆記No.10筆記
- Tensorflow學習筆記No.11筆記
- Tensorflow學習筆記No.7筆記
- 深度學習筆記8:利用Tensorflow搭建神經網路深度學習筆記神經網路
- CCNA學習筆記8筆記
- yii學習筆記--url解析筆記
- Android學習筆記(8)Android筆記
- tensorflow學習筆記--embedding_lookup()用法筆記
- TensorFlow學習筆記(1):線性迴歸筆記
- 【Go學習筆記16】解析xmlGo筆記XML
- 【Go學習筆記15】解析yamlGo筆記YAML
- G01學習筆記-8筆記
- asio學習筆記8——stackfull coroutine筆記
- k8s學習筆記K8S筆記
- Tensorflow學習筆記: 變數及共享變數筆記變數
- JDK8 新特性學習筆記JDK筆記
- oracle學習筆記8: 分析函式Oracle筆記函式
- angular學習筆記(三十)-指令(8)-scopeAngular筆記
- DG學習筆記(8)_Switchover and Failover筆記AI
- 強化學習-學習筆記8 | Q-learning強化學習筆記
- TensorFlow學習筆記(8):基於MNIST資料的迴圈神經網路RNN筆記神經網路RNN
- tensorflow學習筆記1——mac開發環境配置筆記Mac開發環境
- AI學習筆記——Tensorflow中的Optimizer(優化器)AI筆記優化
- tensorflow學習筆記1(程式碼轉自官網)筆記
- nginx學習筆記(1):配置項的解析Nginx筆記
- Flutter學習筆記(8)--Dart物件導向Flutter筆記Dart物件
- Laravel8學習筆記-日誌元件Laravel筆記元件
- numpy的學習筆記\pandas學習筆記筆記
- Pytest學習筆記8-引數化筆記
- Python學習筆記8——列表、字典、元組Python筆記