深度學習面試100題(第1-5題):經典常考點CNN
1、梯度下降演算法的正確步驟是什麼?
a.計算預測值和真實值之間的誤差
b.重複迭代,直至得到網路權重的最佳值
c.把輸入傳入網路,得到輸出值
d.用隨機值初始化權重和偏差
e.對每一個產生誤差的神經元,調整相應的(權重)值以減小誤差
A.abcde B.edcba C.cbaed D.dcaeb
解析:正確答案D,考查知識點-深度學習。
2、已知:
- 大腦是有很多個叫做神經元的東西構成,神經網路是對大腦的簡單的數學表達。
- 每一個神經元都有輸入、處理函式和輸出。
- 神經元組合起來形成了網路,可以擬合任何函式。
- 為了得到最佳的神經網路,我們用梯度下降方法不斷更新模型
給定上述關於神經網路的描述,什麼情況下神經網路模型被稱為深度學習模型?
A.加入更多層,使神經網路的深度增加
B.有維度更高的資料
C.當這是一個圖形識別的問題時
D.以上都不正確
解析:正確答案A,更多層意味著網路更深。沒有嚴格的定義多少層的模型才叫深度模型,目前如果有超過2層的隱層,那麼也可以及叫做深度模型。
3、訓練CNN時,可以對輸入進行旋轉、平移、縮放等預處理提高模型泛化能力。這麼說是對,還是不對?
A.對 B.不對
解析:對。如寒sir所說,訓練CNN時,可以進行這些操作。當然也不一定是必須的,只是data augmentation擴充資料後,模型有更多資料訓練,泛化能力可能會變強。
4、下面哪項操作能實現跟神經網路中Dropout的類似效果?
A.Boosting B.Bagging C.Stacking D.Mapping
解析:正確答案B。Dropout可以認為是一種極端的Bagging,每一個模型都在單獨的資料上訓練,同時,通過和其他模型對應引數的共享,從而實現模型引數的高度正則化。
5、下列哪一項在神經網路中引入了非線性?
A.隨機梯度下降
B.修正線性單元(ReLU)
C.卷積函式
D.以上都不正確
解析:正確答案B。修正線性單元是非線性的啟用函式。
七月線上獨家釋出了國內首個AI筆試面試題庫,總共3000道,涵蓋數學、Python、資料結構、機器學習、深度學習、CV、NLP等等,這3000道題的題目、答案、解析全都在七月線上APP和官網上,詳情請點選閱讀原文。
相關文章
- 深度學習面試100題(第46-50題)深度學習面試
- 深度學習面試100題(第51-55題)深度學習面試
- 深度學習面試100題(第56-60題)深度學習面試
- 深度學習面試100題(第31-35題)深度學習面試
- 深度學習面試100題(第36-40題)深度學習面試
- 深度學習面試100題(第41-45題)深度學習面試
- 深度學習面試100題(第61-65題)深度學習面試
- 深度學習面試100題(第16-20題)深度學習面試
- 深度學習面試100題(第21-25題)深度學習面試
- 深度學習面試100題(第26-30題)深度學習面試
- 深度學習面試100題(第6-10題)深度學習面試
- 深度學習面試100題(第11-15題)深度學習面試
- 微軟經典面試100題系列(部分)微軟面試
- 【轉】外企英文面試經典考題集錦面試
- 經典面試題面試題
- A-深度學習面試題深度學習面試題
- Python經典程式設計習題100例:第3例Python程式設計
- 100+經典Java面試題及答案解析Java面試題
- 深度學習與圖神經網路學習分享:CNN 經典網路之-ResNet深度學習神經網路CNN
- java經典面試題Java面試題
- javascript經典面試題JavaScript面試題
- Js 經典面試題JS面試題
- 前端經典面試題前端面試題
- 大前端常見面試題:HTML常考知識點前端面試題HTML
- 我的Java開發學習之旅------>Java經典面試題Java面試題
- golang 面試常考問題Golang面試
- Java常考面試題(五)Java面試題
- Java常考面試題(一)Java面試題
- Java常考面試題(二)Java面試題
- Java常考面試題(三)Java面試題
- Java常考面試題(四)Java面試題
- [面試題]事件迴圈經典面試題解析面試題事件
- Python經典程式設計習題100例:第19例:找完數Python程式設計
- 常見面試題學習(4)面試題
- Google經典面試題解析Go面試題
- 經典Java面試題收集Java面試題
- C++經典面試題C++面試題
- 經典SQL面試題1SQL面試題