用Java實現samza轉換成flink

TechSynapse發表於2024-11-10

將Apache Samza作業遷移到Apache Flink作業是一個複雜的任務,因為這兩個流處理框架有不同的API和架構。然而,我們可以將Samza作業的核心邏輯遷移到Flink,並儘量保持功能一致。

假設我們有一個簡單的Samza作業,它從Kafka讀取資料,進行一些處理,然後將結果寫回到Kafka。我們將這個邏輯遷移到Flink。

1. Samza 作業示例

首先,讓我們假設有一個簡單的Samza作業:

// SamzaConfig.java
import org.apache.samza.config.Config;
import org.apache.samza.config.MapConfig;
import org.apache.samza.serializers.JsonSerdeFactory;
import org.apache.samza.system.kafka.KafkaSystemFactory;
 
import java.util.HashMap;
import java.util.Map;
 
public class SamzaConfig {
    public static Config getConfig() {
        Map<String, String> configMap = new HashMap<>();
        configMap.put("job.name", "samza-flink-migration-example");
        configMap.put("job.factory.class", "org.apache.samza.job.yarn.YarnJobFactory");
        configMap.put("yarn.package.path", "/path/to/samza-job.tar.gz");
        configMap.put("task.inputs", "kafka.my-input-topic");
        configMap.put("task.output", "kafka.my-output-topic");
        configMap.put("serializers.registry.string.class", "org.apache.samza.serializers.StringSerdeFactory");
        configMap.put("serializers.registry.json.class", JsonSerdeFactory.class.getName());
        configMap.put("systems.kafka.samza.factory", KafkaSystemFactory.class.getName());
        configMap.put("systems.kafka.broker.list", "localhost:9092");
 
        return new MapConfig(configMap);
    }
}
 
// MySamzaTask.java
import org.apache.samza.application.StreamApplication;
import org.apache.samza.application.descriptors.StreamApplicationDescriptor;
import org.apache.samza.config.Config;
import org.apache.samza.system.IncomingMessageEnvelope;
import org.apache.samza.system.OutgoingMessageEnvelope;
import org.apache.samza.system.SystemStream;
import org.apache.samza.task.MessageCollector;
import org.apache.samza.task.TaskCoordinator;
import org.apache.samza.task.TaskContext;
import org.apache.samza.task.TaskInit;
import org.apache.samza.task.TaskRun;
import org.apache.samza.serializers.JsonSerde;
 
import java.util.HashMap;
import java.util.Map;
 
public class MySamzaTask implements StreamApplication, TaskInit, TaskRun {
    private JsonSerde<String> jsonSerde = new JsonSerde<>();
 
    @Override
    public void init(Config config, TaskContext context, TaskCoordinator coordinator) throws Exception {
        // Initialization logic if needed
    }
 
    @Override
    public void run() throws Exception {
        MessageCollector collector = getContext().getMessageCollector();
        SystemStream inputStream = getContext().getJobContext().getInputSystemStream("kafka", "my-input-topic");
 
        for (IncomingMessageEnvelope envelope : getContext().getPoll(inputStream, "MySamzaTask")) {
            String input = new String(envelope.getMessage());
            String output = processMessage(input);
            collector.send(new OutgoingMessageEnvelope(getContext().getOutputSystem("kafka"), "my-output-topic", jsonSerde.toBytes(output)));
        }
    }
 
    private String processMessage(String message) {
        // Simple processing logic: convert to uppercase
        return message.toUpperCase();
    }
 
    @Override
    public StreamApplicationDescriptor getDescriptor() {
        return new StreamApplicationDescriptor("MySamzaTask")
                .withConfig(SamzaConfig.getConfig())
                .withTaskClass(this.getClass());
    }
}

現在,讓我們將這個Samza作業遷移到Flink:

// FlinkConfig.java
import org.apache.flink.configuration.Configuration;
 
public class FlinkConfig {
    public static Configuration getConfig() {
        Configuration config = new Configuration();
        config.setString("execution.target", "streaming");
        config.setString("jobmanager.rpc.address", "localhost");
        config.setInteger("taskmanager.numberOfTaskSlots", 1);
        config.setString("pipeline.execution.mode", "STREAMING");
        return config;
    }
}
 
// MyFlinkJob.java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
 
import java.util.Properties;
 
public class MyFlinkJob {
    public static void main(String[] args) throws Exception {
        // Set up the execution environment
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 
        // Configure Kafka consumer
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "localhost:9092");
        properties.setProperty("group.id", "flink-consumer-group");
 
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("my-input-topic", new SimpleStringSchema(), properties);
 
        // Add source
        DataStream<String> stream = env.addSource(consumer);
 
        // Process the stream
        DataStream<String> processedStream = stream.map(new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {
                return value.toUpperCase();
            }
        });
 
        // Configure Kafka producer
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>("my-output-topic", new SimpleStringSchema(), properties);
 
        // Add sink
        processedStream.addSink(producer);
 
        // Execute the Flink job
        env.execute("Flink Migration Example");
    }
}

3. 執行Flink作業

(1)設定Flink環境:確保你已經安裝了Apache Flink,並且Kafka叢集正在執行。

(2)編譯和執行:

  • 使用Maven或Gradle編譯Java程式碼。
  • 提交Flink作業到Flink叢集或本地執行。
# 編譯(假設使用Maven)
mvn clean package
 
# 提交到Flink叢集(假設Flink在本地執行)
./bin/flink run -c com.example.MyFlinkJob target/your-jar-file.jar

4. 注意事項

  • 依賴管理:確保在pom.xmlbuild.gradle中新增了Flink和Kafka的依賴。
  • 序列化:Flink使用SimpleStringSchema進行簡單的字串序列化,如果需要更復雜的序列化,可以使用自定義的序列化器。
  • 錯誤處理:Samza和Flink在錯誤處理方面有所不同,確保在Flink中適當地處理可能的異常。
  • 效能調優:根據實際需求對Flink作業進行效能調優,包括並行度、狀態後端等配置。

這個示例展示瞭如何將一個簡單的Samza作業遷移到Flink。

相關文章