實現方式一:手動實現
# Fashion-MNIST分類
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display
import matplotlib.pyplot as plt
from dynamic_plot_loss_acc import DynamicPlotProcessData
# d2l.use_svg_display()
# ----讀取資料集---- #
# 透過ToTensor例項將影像資料從PIL型別變換成32位浮點數格式,
# 併除以255使得所有畫素的數值均在0~1之間
# trans = transforms.ToTensor()
# mnist_train = torchvision.datasets.FashionMNIST(
# root="../data",
# train=True,
# transform=trans,
# download=True)
# mnist_test = torchvision.datasets.FashionMNIST(
# root="../data",
# train=False,
# transform=trans,
# download=True)
#
# len(mnist_train), len(mnist_test)
# mnist_train[0] # 包括圖片和標籤
# mnist_train[0][0].shape # 圖片 torch.Size([1, 28, 28])
# mnist_train[0][1] # 標籤
def get_fashion_mnist_labels(labels):
"""返回Fashion-MNIST資料集的文字標籤"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""繪製影像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 圖片張量
ax.imshow(img.numpy())
else:
# PIL圖片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
# ----讀取小批次---- #
batch_size = 256
def get_dataloader_workers():
"""使用4個程序來讀取資料"""
return 4
# 整合所有元件
def load_data_fashion_mnist(batch_size, resize=None):
"""下載Fashion-MNIST資料集,然後將其載入到記憶體中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
# len(mnist_train), len(mnist_test)
# mnist_train[0][0].shape
train_iter, test_iter = load_data_fashion_mnist(batch_size) # , resize=64
len(train_iter), len(test_iter)
train_iter.dataset.__getitem__(0)[0].shape
train_iter.dataset.__getitem__(0)[1]
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
W.shape # torch.Size([784, 10])
b.shape # torch.Size([10])
#
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition # 這裡應用了廣播機制
# 定義模型
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
# y = torch.tensor([0, 2])
# y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
# y_hat[[0, 1], y] # 等價於y_hat[[0, 1], [0, 2]] 取出y_hat中的0行0列,1行2列的資料
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
def accuracy(y_hat, y):
"""計算預測正確的數量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
"""計算在指定資料集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 將模型設定為評估模式
metric = Accumulator(2) # 正確預測數、預測總數
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
class Accumulator:
"""在n個變數上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# 訓練
def train_epoch_ch3(net, train_iter, loss, updater):
"""訓練模型一個迭代週期(定義見第3章)"""
# 將模型設定為訓練模式
if isinstance(net, torch.nn.Module):
net.train()
# 訓練損失總和、訓練準確度總和、樣本數
metric = Accumulator(3)
for X, y in train_iter:
# 計算梯度並更新引數
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch內建的最佳化器和損失函式
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定製的最佳化器和損失函式
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回訓練損失和訓練精度
return metric[0] / metric[2], metric[1] / metric[2]
class Animator:
"""在動畫中繪製資料"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5), pic_name=None):
# 增量地繪製多條線
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函式捕獲引數
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
self.pic_name = pic_name
def add(self, x, y):
# 向圖表中新增多個資料點
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
plt.draw()
plt.pause(0.1)
plt.savefig(self.pic_name)
display.display(self.fig)
display.clear_output(wait=True)
def show(self):
display.display(self.fig)
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
"""訓練模型(定義見第3章)"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'], pic_name="Fashion_mnist")
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
animator.show()
print(f"epoch:{epoch}, test_acc:{test_acc}, train_loss:{train_metrics[0]}, train_acc:{train_metrics[1]}")
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
lr = 0.1
# 最佳化器
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
def predict_ch3(net, test_iter, n=6):
"""預測標籤(定義見第3章)"""
for X, y in test_iter:
# break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
實現方式二:呼叫nn中的函式
# Fashion-MNIST分類
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display
import matplotlib.pyplot as plt
def get_fashion_mnist_labels(labels):
"""返回Fashion-MNIST資料集的文字標籤"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""繪製影像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 圖片張量
ax.imshow(img.numpy())
else:
# PIL圖片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
def get_dataloader_workers():
"""使用4個程序來讀取資料"""
return 4
# 整合所有元件
def load_data_fashion_mnist(batch_size, resize=None):
"""下載Fashion-MNIST資料集,然後將其載入到記憶體中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 10
train_iter, test_iter = load_data_fashion_mnist(batch_size) # 不進行resize操作, resize=64
# PyTorch不會隱式地調整輸入的形狀。因此,
# 我們線上性層前定義了展平層(flatten),來調整網路輸入的形狀
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
loss = nn.CrossEntropyLoss(reduction='none')
# 最佳化器
trainer = torch.optim.SGD(net.parameters(), lr=0.001)
def accuracy(y_hat, y):
"""計算預測正確的數量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy(net, data_iter):
"""計算在指定資料集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 將模型設定為評估模式
metric = Accumulator(2) # 正確預測數、預測總數
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
class Accumulator:
"""在n個變數上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# 訓練
def train_epoch_ch3(net, train_iter, loss, updater):
"""訓練模型一個迭代週期(定義見第3章)"""
# 將模型設定為訓練模式
if isinstance(net, torch.nn.Module):
net.train()
# 訓練損失總和、訓練準確度總和、樣本數
metric = Accumulator(3)
for X, y in train_iter:
# 計算梯度並更新引數
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch內建的最佳化器和損失函式
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定製的最佳化器和損失函式
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回訓練損失和訓練精度
return metric[0] / metric[2], metric[1] / metric[2]
class Animator:
"""在動畫中繪製資料"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5), pic_name=None):
# 增量地繪製多條線
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函式捕獲引數
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
self.pic_name = pic_name
def add(self, x, y):
# 向圖表中新增多個資料點
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
plt.draw()
plt.pause(0.1)
plt.savefig(self.pic_name)
display.display(self.fig)
display.clear_output(wait=True)
def show(self):
display.display(self.fig)
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
"""訓練模型(定義見第3章)"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'], pic_name="Simple_Fashion_mnist")
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
num_epochs = 10
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
def predict_ch3(net, test_iter, n=6):
"""預測標籤(定義見第3章)"""
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(
X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)