配置Hadoop2.7.2和Hbase1.1.5支援Snappy解壓壓縮庫
一.Hadoop支援Snappy
1.重新編譯Hadoop 2.7.2原始碼,使其支援Snappy解壓壓縮庫 http://blog.itpub.net/30089851/viewspace-2120631/
2.檢視libsnappy.so.1.2.0
[root@sht-sgmhadoopnn-01 ~]# ll $HADOOP_HOME/lib/native/
total 4880
-rw-r--r-- 1 root root 1211196 Jun 21 19:11 libhadoop.a
-rw-r--r-- 1 root root 1485756 Jun 21 19:12 libhadooppipes.a
lrwxrwxrwx 1 root root 18 Jun 21 19:45 libhadoop.so -> libhadoop.so.1.0.0
-rwxr-xr-x 1 root root 717060 Jun 21 19:11 libhadoop.so.1.0.0
-rw-r--r-- 1 root root 582128 Jun 21 19:12 libhadooputils.a
-rw-r--r-- 1 root root 365052 Jun 21 19:11 libhdfs.a
lrwxrwxrwx 1 root root 16 Jun 21 19:45 libhdfs.so -> libhdfs.so.0.0.0
-rwxr-xr-x 1 root root 229289 Jun 21 19:11 libhdfs.so.0.0.0
-rw-r--r-- 1 root root 233538 Jun 21 19:11 libsnappy.a
-rwxr-xr-x 1 root root 953 Jun 21 19:11 libsnappy.la
lrwxrwxrwx 1 root root 18 Jun 21 19:45 libsnappy.so -> libsnappy.so.1.2.0
lrwxrwxrwx 1 root root 18 Jun 21 19:45 libsnappy.so.1 -> libsnappy.so.1.2.0
-rwxr-xr-x 1 root root 147726 Jun 21 19:11 libsnappy.so.1.2.0
[root@sht-sgmhadoopnn-01 ~]#
###假如叢集已經安裝好
3.修改$HADOOP_HOME/etc/hadoop/hadoop-env.sh,新增
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib:$HADOOP_HOME/lib/native"
############會解決Warn:” Unable to load native-hadoop library ”################################################
[root@sht-sgmhadoopnn-01 ~]# hadoop fs -ls /
16/06/21 15:08:24 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
##################################################################################################
4.修改$HADOOP_HOME/etc/hadoop/core-site.xml
點選(此處)摺疊或開啟
-
<property>
-
-
<name>io.compression.codecs</name>
-
-
<value>org.apache.hadoop.io.compress.GzipCodec,
-
-
org.apache.hadoop.io.compress.DefaultCodec,
-
-
org.apache.hadoop.io.compress.BZip2Codec,
-
-
org.apache.hadoop.io.compress.SnappyCodec
-
-
</value>
-
- </property>
5.修改 $HADOOP_HOME/etc/hadoop/mapred-site.xml 中有關壓縮屬性,測試snappy
點選(此處)摺疊或開啟
-
<property>
-
-
<name>mapreduce.map.output.compress</name>
-
-
<value>true</value>
-
-
</property>
-
-
-
-
<property>
-
-
<name>mapreduce.map.output.compress.codec</name>
-
-
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
-
- </property>
6.新增$HADOOP_HOME/etc/hadoop/yarn-site.xml(是否啟用日誌聚集功能、yarn日誌服務的地址、配置yarn的memory和cpu)
點選(此處)摺疊或開啟
-
<property>
-
<name>yarn.log-aggregation-enable</name>
-
<value>true</value>
-
</property>
-
<property>
-
<name>yarn.log.server.url</name>
-
<value>http://sht-sgmhadoopnn-01:19888/jobhistory/logs</value>
-
</property>
-
-
<property>
-
<name>yarn.nodemanager.resource.memory-mb</name>
-
<value>10240</value>
-
</property>
-
<property>
-
<name>yarn.scheduler.minimum-allocation-mb</name>
-
<value>1500</value>
-
<discription>單個任務可申請最少記憶體,預設1024MB</discription>
-
</property>
-
-
<property>
-
<name>yarn.scheduler.maximum-allocation-mb</name>
-
<value>2500</value>
-
<discription>單個任務可申請最大記憶體,預設8192MB</discription>
-
</property>
-
<property>
-
<name>yarn.nodemanager.resource.cpu-vcores</name>
-
<value>2</value>
-
</property>
點選(此處)摺疊或開啟
-
<property>
-
<name>yarn.log-aggregation-enable</name>
-
<value>true</value>
-
</property>
-
<property>
-
<name>yarn.log.server.url</name>
-
<value>http://sht-sgmhadoopnn-01:19888/jobhistory/logs</value>
-
</property>
-
-
<property>
-
<name>yarn.nodemanager.resource.memory-mb</name>
-
<value>10240</value>
-
</property>
-
<property>
-
<name>yarn.scheduler.minimum-allocation-mb</name>
-
<value>1500</value>
-
<discription>單個任務可申請最少記憶體,預設1024MB</discription>
-
</property>
-
-
<property>
-
<name>yarn.scheduler.maximum-allocation-mb</name>
-
<value>2500</value>
-
<discription>單個任務可申請最大記憶體,預設8192MB</discription>
-
</property>
-
<property>
-
<name>yarn.nodemanager.resource.cpu-vcores</name>
-
<value>2</value>
- </property>
7.將hadoop-env.sh, core-site.xml, mapred-site.xml,yarn-site.xml 同步到叢集其他節點
8.重啟Hadoop叢集
9.驗證1: hadoop checknative
[root@sht-sgmhadoopnn-01 ~]# hadoop checknative
16/06/25 12:58:13 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
16/06/25 12:58:13 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /hadoop/hadoop-2.7.2/lib/native/libhadoop.so.1.0.0
zlib: true /usr/local/lib/libz.so.1
snappy: true /hadoop/hadoop-2.7.2/lib/native/libsnappy.so.1
lz4: true revision:99
bzip2: false
openssl: true /usr/lib64/libcrypto.so
[root@sht-sgmhadoopnn-01 ~]#
####支援本地native,支援snappy
10.驗證2
[root@sht-sgmhadoopnn-01 ~]# vi test.log
a
c d
c d d d a
1 2
a
[root@sht-sgmhadoopnn-01 ~]# hadoop fs -mkdir /input
[root@sht-sgmhadoopnn-01 ~]#hadoop fs -put test.log /input/
[root@sht-sgmhadoopnn-01 ~]#hadoop jar /hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar wordcount /input /output1
為了驗證是否成功,往hdfs上傳一個文字檔案,敲入一些片語,執行wordcount程式。如果map部分100%完成,即說明我們hadoop snappy安裝成功。
因為hadoop沒有像HBase一樣提供util.CompressionTest類(或者是我沒有找到),所以只能按照這種方法來測試。接下來,將詳細列出HBase使用Snappy的配置過程。
二.HBase支援Snappy
1.複製hadoop的native資料夾至hbase的lib目錄下
[root@sht-sgmhadoopnn-01 ~]# cp -r $HADOOP_HOME/lib/native $HBASE_HOME/lib/
2.修改$HBASE_HOME/conf/hbase-env.sh,新增
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HADOOP_HOME/lib/native/
export HBASE_LIBRARY_PATH=$HBASE_LIBRARY_PATH:$HBASE_HOME/lib/native/
3.將hbase-env.sh同步到叢集其他節點
4.重啟Hbase叢集
5.驗證1: hbase org.apache.hadoop.hbase.util.CompressionTest hdfs://mycluster/output1/part-r-00000 snappy
[root@sht-sgmhadoopnn-01 ~]#hbase org.apache.hadoop.hbase.util.CompressionTest hdfs://mycluster/output1/part-r-00000 snappy
#使用 CompressionTest 來檢視snappy是否 enabled 並且能成功 loaded.
/output1/part-r-00000 為我們在驗證hadoop snappy的時候,wordcount的輸出
6.驗證2:建表和put插入資料
點選(此處)摺疊或開啟
-
hbase(main):004:0> create 'test_snappy', { NAME => 'f', COMPRESSION => 'snappy'}
-
-
0 row(s) in 2.2570 seconds
-
-
-
-
-
=> Hbase::Table - tsnappy0
-
- hbase(main):005:0> put ' test_snappy'', 'row1', 'f:col1', 'value
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/30089851/viewspace-2121010/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- Hadoop上配置snappy壓縮格式(最簡單的做法)HadoopAPP
- linuxtar解壓和壓縮Linux
- CentOS中zip壓縮和unzip解壓縮命令詳解CentOS
- Linux壓縮解壓Linux
- CentOS 壓縮解壓CentOS
- linux下壓縮解壓縮命令Linux
- Linux科研武器庫 - 檔案壓縮與解壓縮 - zip / unzipLinux
- linux分卷壓縮解壓Linux
- Linux tar分卷壓縮與解壓縮Linux
- 分卷壓縮怎麼解壓 快速解壓電腦分卷壓縮檔案方法
- linux 高效壓縮工具之xz的壓縮解壓使用Linux
- Linux打包壓縮解壓工具Linux
- .NET 壓縮/解壓檔案
- Keka for Mac(壓縮解壓工具)Mac
- Keka for Mac壓縮解壓工具Mac
- MyZip for mac解壓壓縮工具Mac
- Kafka - 支援壓縮種類Kafka
- Linux下的tar壓縮解壓縮命令詳解Linux
- Linux 常用的壓縮與解壓縮命令詳解Linux
- Nginx網路壓縮 CSS壓縮 圖片壓縮 JSON壓縮NginxCSSJSON
- Mac壓縮解壓工具:Keka for MacMac
- A-Zippr for Mac 壓縮解壓工具Mac
- linux下壓縮、解壓命令大全Linux
- tomcat網頁壓縮配置Tomcat網頁
- linux 下面壓縮、解壓.rar檔案Linux
- 檔案壓縮和解壓縮
- FastZip for Mac_Mac解壓軟體_Mac壓縮_Mac解壓工具ASTMac
- 壓縮解壓軟體:解壓專家Oka for Mac中文版Mac
- Python實現壓縮和解壓縮Python
- linux壓縮和解壓縮命令整理Linux
- JS壓縮方法及批量壓縮JS
- Linux下檔案的壓縮與解壓Linux
- linux 下壓縮與解壓資料夾Linux
- 實用的壓縮解壓工具:WinZip for MacMac
- Hadoop支援的壓縮格式對比和應用場景以及Hadoop native庫Hadoop
- 壓縮命令tar詳解
- mysql壓縮解決方案MySql
- PAT-B 1078 字串壓縮與解壓【字串】字串
- C# 關於壓縮、加密、解壓問題C#加密