最近要在 Spark job 中通過 Spark SQL 的方式讀取 Elasticsearch 資料,踩了一些坑,總結於此。
環境說明
-
Spark job 的編寫語言為 Scala,scala-library 的版本為 2.11.8。
-
Spark 相關依賴包的版本為 2.3.2,如 spark-core、spark-sql。
-
Elasticsearch 資料
schema
{ "settings": { "number_of_replicas": 1 }, "mappings": { "label": { "properties": { "docId": { "type": "keyword" }, "labels": { "type": "nested", "properties": { "id": { "type": "long" }, "label": { "type": "keyword" } } }, "itemId": { "type": "long" } } } } }
sample data
{ "took" : 141, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : 17370929, "max_score" : 1.0, "hits" : [ { "_index" : "aen-label-v1", "_type" : "label", "_id" : "123_ITEM", "_score" : 1.0, "_source" : { "docId" : "123_ITEM", "labels" : [ { "id" : 7378, "label" : "1kg" } ], "itemId" : 123 } }, { "_index" : "aen-label-v1", "_type" : "label", "_id" : "456_ITEM", "_score" : 1.0, "_source" : { "docId" : "456_ITEM", "labels" : [ { "id" : 7378, "label" : "2kg" } ], "itemId" : 456 } } ] } }
準備工作
既然要用 Spark SQL,當然少不了其對應的依賴,
dependencies {
implementation 'org.apache.spark:spark-core_2.11:2.3.2'
implementation 'org.apache.spark:spark-sql_2.11:2.3.2'
}
對於 ES 的相關庫,如同 官網 所說,要在 Spark 中訪問 ES,需要將 elasticsearch-hadoop
依賴包加入到 Spark job 執行的類路徑中,具體而言就是新增到 Spark job 工程的依賴中,公司的 nexus 中當前最新的版本為 7.15.0,且目前我們是使用 gradle 管理依賴,故新增依賴的程式碼如下,
dependencies {
implementation 'org.elasticsearch:elasticsearch-hadoop:7.15.0'
}
本地測試
對於 Spark,基於資源管理器的不同,可以在兩種模式下執行:本地模式和叢集模式,可通過 --master
引數來指定資源管理器的方式。本地模式時,不依賴額外的 Spark 叢集,Spark 將在同一臺機器上執行所有內容,非常方便用於本地測試,對於 Spark SQL,只需要在建立 SparkSession 時採用 local 的模式即可,
class MyUtils extends Serializable {
def esHost() = s"es.sherlockyb.club"
// local mode
def getLocalSparkSession: SparkSession = SparkSession.builder()
.master("local")
.getOrCreate()
// cluster mode
def getSparkSession: SparkSession = SparkSession.builder()
.enableHiveSupport()
.config("spark.sql.broadcastTimeout", "3600")
.getOrCreate()
}
測試程式碼
object LocalTest extends LazyLogging {
def main(args: Array[String]): Unit = {
new LocalTest().run()
}
}
class LocalTest {
def run(): Unit = {
val myUtils = new MyUtils
val spark = myUtils.getLocalSparkSession
import spark.implicits._
var start = System.currentTimeMillis()
val attributeId = 7378L
val labelNames = Array("aen-label-retail", "aen-label-seller")
spark.read
.format("es")
.option("es.nodes", myUtils.esHost())
.option("es.port", "9200")
.option("es.nodes.wan.only", value = true)
.option("es.resource", Joiner.on(",").join(java.util.Arrays.asList(labelNames:_*)) + "/label")
.option("es.scroll.size", 2000)
.load()
.createOrReplaceTempView("temp_labels")
val sqlDf = spark.sql("select itemId, labels from temp_labels where itemId in (123, 456)")
val newDf = sqlDf
.map(row => {
val labels = row.getAs[Seq[Row]]("labels")
val labelValue = labels.find(p => p.getAs[Long]("id") == attributeId).map(p => p.getAs[String]("label"))
(row.getAs[Long]("itemId"), attributeId, labelValue.orNull)
})
.withColumn("final_result", lit("PASS"))
.toDF("itemId", "attributeId", "label", "final_result")
val finalDf = newDf.toDF("itemId", "attributeId", "label", "result")
finalDf.printSchema()
finalDf.show()
var emptyDf = newDf
.filter(col("label").isNotNull)
.toDF("itemId", "attributeId", "label", "result")
emptyDf = emptyDf.union(finalDf)
emptyDf.printSchema()
emptyDf.show()
emptyDf.filter(col("itemId") === 6238081929L and col("label").notEqual(col("result")))
.show()
val attributeTypeIds = Array.fill(3)(100)
val attributeTypeIdsStr = Joiner.on(",").join(java.util.Arrays.asList(attributeTypeIds:_*))
println(attributeTypeIdsStr)
import scala.collection.JavaConverters._
emptyDf = emptyDf.filter(!col("itemId").isin(trainItemIds.asScala.map(Long2long).toList:_*))
emptyDf.show(false)
}
}
知識點
Spark SQL Data Sources
Spark SQL 通過 DataFrameReader
類支援讀取各種型別的資料來源,比如 Parquet、ORC、JSON、CSV 等格式的檔案,Hive table,以及其他 database。而 Elasticsearch 只不過是眾多資料來源中的一種,DataFrameReader
通過 format(...)
指定資料來源格式,通過 option(...)
定製對應資料來源下的配置,最後通過 load()
載入生成 DataFrame
,也就是 Dataset[Row]
的型別別名。有了 DataFrame
,就可以建立一個臨時表,然後就能以 SQL 的方式讀取資料。
在 Spark 1.5 以前,Elasticsearch 在 format(...)
中對應的 source 名需要是全包名 org.elasticsearch.spark.sql
,而在 Spark 1.5 以及之後的版本,source 名稱簡化為 es
。
Spark SQL 中 DataFrame 常用 API
- df.printSchema(),列印 schema
- df.show(),檢視資料列表,預設是 truncate 前 20 條,傳 false 時列出全部資料。
- df.createOrReplaceTempView("view_name"),構建臨時表檢視,方便後續 SQL 操作。
- df.withColumn(),新增新列或替換現有列。
- df.withColumn("final_result", lit("PASS")) ,通過
lit
新增常量列。
- df.withColumn("final_result", lit("PASS")) ,通過
- df.filter(col("label").isNotNull),用指定的條件過濾行。
- df.dropDuplicates("itemId","attributeId"),按指定列對行去重,返回新的資料集。
- df.union(otherDf),將兩個 DataFrame 的記錄合併且不去重,相當於 union all。
- df.toDF("itemId", "attributeId", "label", "final_result"),為 df 各列指定一個有意義的名稱。
Scala 與 Java 型別對映
- scala.Long -> long
- Array[T] -> T[]
Scala 與 Java 型別轉換
import scala.collection.JavaConverters._
newDf = df.filter(!col("itemId").isin(trainItemIds.asScala.map(Long2long).toList:_*))
Scala 中的 : _*
:_*
是 type ascription 的一個特例,它會告訴編譯器將序列型別的單個引數視為變引數序列,即 varargs。應用例子,
val indices = Array("aen-label", "aen-label-seller")
Joiner.on(",").join(java.util.Arrays.asList(indices:_*))
踩的坑
es.nodes.wan.only
該配置項表示聯結器是否用於 WAN 上的雲或受限環境如 AWS 中的 Elasticsearch 例項,預設為 false,而公司的 Elasticsearch 叢集是在 AWS 上的,endpoint 只能在內網訪問,因而剛開始測試時,遇到如下報錯,
Exception in thread "main" org.elasticsearch.hadoop.EsHadoopIllegalArgumentException: No data nodes with HTTP-enabled available
at org.elasticsearch.hadoop.rest.InitializationUtils.filterNonDataNodesIfNeeded(InitializationUtils.java:159)
at org.elasticsearch.hadoop.rest.RestService.findPartitions(RestService.java:223)
at org.elasticsearch.spark.rdd.AbstractEsRDD.esPartitions$lzycompute(AbstractEsRDD.scala:73)
at org.elasticsearch.spark.rdd.AbstractEsRDD.esPartitions(AbstractEsRDD.scala:72)
at org.elasticsearch.spark.rdd.AbstractEsRDD.getPartitions(AbstractEsRDD.scala:44)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:340)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
at org.apache.spark.sql.Dataset.show(Dataset.scala:723)
通過 option("es.nodes.wan.only", value = true)
將配置項設定為 true 後恢復正常。
importing spark.implicits._
在遍歷 DataFrame 時遇到如下編譯錯誤,
Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._
在處理 DataFrame 之前需要加上 importing spark.implicits._
,用於將常見的 Scala 物件轉換為 DataFrame,通常在獲取 SparkSession 後立馬 import。
Spark SQL 讀取 hive 表中 array 型別時,對於 Scala 語言,得到的型別是 WrappedArray
而不是 Array
當我們通過 createOrReplaceTempView("temp_labels")
構建一個臨時表檢視後,就可以通過 SQL 像操作 hive 表那樣讀取資料。例如讀取指定的列,
val sqlDf = spark.sql("select itemId, labels from temp_labels where itemId in (123, 456)")
通過 sqlDf.printSchema()
可以看到 sqlDf 的 schema 長這樣,
root
|-- itemId: long (nullable = true)
|-- labels: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- id: long (nullable = true)
| | |-- label: string (nullable = true)
labels
是包含 struct 的陣列,於是從 row 中將 labels
列讀出時想嘗試轉換為 Array,
val newDf = sqlDf.map(
row => {
val labels = row.getAs[Array[Row]]("labels")
val labelValue = labels.find(p => p.getAs[Long]("id") == attributeId).map(p => p.getAs[String]("label"))
(row.getAs[Long]("itemId"), attributeId, labelValue.orNull)
}
)
結果報錯如下,
java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [Lorg.apache.spark.sql.Row;
可以看到 Spark SQL 在讀取表中陣列列時,是用的 scala.collection.mutable.WrappedArray
來儲存結果的,看其類定義可知,它是間接實現 Seq 介面的,所以也可用 row.getAs[Seq[Row]]("labels")
來讀取。這裡需要注意的是,Array[T] 雖然在 Scala 原始碼定義中是 class,但其對標的 Java 型別是原生陣列 T[]。
判斷 Column 是否為 null 時,需要用 is null
或 is not null
,而不是 ===
或 !==
對於錯誤的用法,filter 並不會生效,就像下面這樣
newDf.filter(col("label") !== null)
這一點和 hive 表以及 MySQL 表判斷欄位是否為 null,是保持一致的,應該像下面這樣,
newDf.filter(col("label").isNotNull)
最終程式碼
import com.google.common.base.Joiner
import com.typesafe.scalalogging.LazyLogging
import org.apache.spark.sql.{DataFrame, Row, SaveMode, SparkSession}
object TestMain extends LazyLogging {
def main(args: Array[String]): Unit = {
val myUtils = new MyUtils
new TestApp(myUtils).run()
}
}
class TestApp(myUtils: MyUtils) extends Serializable with LazyLogging {
def esDf(spark: SparkSession, indices: Array[String]): DataFrame = {
spark.read
.format("es")
.option("es.nodes", myUtils.esHost())
.option("es.port", "9200")
.option("es.nodes.wan.only", value = true)
.option("es.resource", Joiner.on(",").join(java.util.Arrays.asList(indices:_*)) + "/label")
.option("es.scroll.size", 2000)
.load()
}
def run(): Unit = {
val spark = myUtils.getSparkSession
import spark.implicits._
val esTempView = "es_label"
val labelNames = Array("aen-label-retail", "aen-label-seller")
esDf(spark, labelNames).createOrReplaceTempView(esTempView)
val labelDf = getLabelDf(spark, itemIdsStr, attributeTypeIds, esTempView)
println("debug log")
labelDf.printSchema()
labelDf.show()
labelDf.createOrReplaceTempView("final_labels")
val data = spark.sql(
s"""
|select cc.*, pp.final_result, pp.label, null as remark
|from temp_request cc
|left join final_labels pp
|on cc.itemid = pp.itemId
|and cc.attributetypeid = pp.attributeId
|where cc.profile = '$jobId'
|""".stripMargin)
data.distinct().write.mode(SaveMode.Overwrite)
.option("compression", "gzip")
.json(s"s3://sherlockyb-test/check-precision/job_id=$jobId")
}
def getLabelDf(spark: SparkSession, itemIdsStr: String, attributeTypeIds: Array[String], esTempView: String): DataFrame = {
import spark.implicits._
val sqlDf = spark.sql(s"select itemId, labels from $esTempView where itemId in ($itemIdsStr)")
val emptyDf = spark.emptyDataFrame
var labelDf = emptyDf
attributeTypeIds.foreach(attributeTypeId => {
val attributeDf = sqlDf
.map(row => {
val labels = row.getAs[Seq[Row]]("labels")
val labelValue = labels.find(p => p.getAs[Long]("id") == attributeTypeId.toLong).map(p => p.getAs[String]("label"))
(row.getAs[Long]("itemId"), attributeTypeId.toLong, labelValue.orNull)
})
.withColumn("final_result", lit("PASS"))
.toDF("itemId", "attributeId", "label", "final_result")
.filter(col("label").isNotNull)
if (labelDf == emptyDf) {
labelDf = attributeDf
} else {
labelDf = labelDf.union(attributeDf)
}
})
labelDf.dropDuplicates("itemId","attributeId")
}
}
補充:提交 spark job
將 job 工程打包為 Jar,上傳到 AWS 的 s3,比如 s3://sherlockyb-test/1.0.0/artifacts/spark/
目錄下,然後通過 Genie 提交 spark job 到 Spark 叢集執行。Genie 是 Netflix 研發的聯合作業執行引擎,提供 REST-full API 來執行各種大資料作業,如 Hadoop、Pig、Hive、Spark、Presto、Sqoop 等。
def run_spark(job_name, spark_jar_name, spark_class_name, arg_str, spark_param=''):
import pygenie
pygenie.conf.DEFAULT_GENIE_URL = "genie.sherlockyb.club"
job = pygenie.jobs.GenieJob() \
.genie_username('sherlockyb') \
.job_name(job_name) \
.job_version('0.0.1') \
.metadata(teamId='team_account') \
.metadata(teamCredential='team_password')
job.cluster_tags(['type:yarn-kerberos', 'sched:default'])
job.command_tags(['type:spark-submit-kerberos', 'ver:2.3.2'])
job.command_arguments(
f"--class {spark_class_name} {spark_param} "
f"s3a://sherlockyb-test/1.0.0/artifacts/spark/{spark_jar_name} "
f"{arg_str}"
)
# Submit the job to Genie
running_job = job.execute()
running_job.wait()
return running_job.status
首發連結: https://www.yangbing.club/2022/06/03/Spark-reading-elasticsearch-guide/
許可協議: 除特殊宣告外,本博文均採用 CC BY-NC-SA 3.0 CN 許可協議,轉載請註明出處!