本文出處Thread執行緒知識點講解 轉載請說明出處
內部屬性
//執行緒名,如果建立時沒有指定則使用Thread- + 建立序列號
private volatile String name;
//執行緒優先順序 Java只是給作業系統一個優先順序的參考值,執行緒最終在作業系統的優先順序是多少還是由作業系統決定。
private int priority;
//守護執行緒
private boolean daemon = false;
//為JVM保留欄位
private boolean stillborn = false;
private long eetop;
/* What will be run. */
private Runnable target;
//執行緒組,每一個執行緒必定存於一個執行緒組中,執行緒不能獨立於執行緒組外
private ThreadGroup group;
// 類載入器,當執行緒需要載入類時,會使用內部類加器
private ClassLoader contextClassLoader;
/* For autonumbering anonymous threads. */
private static int threadInitNumber;
private static synchronized int nextThreadNum() {
return threadInitNumber++;
}
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
/*
* InheritableThreadLocal values pertaining to this thread. This map is
* maintained by the InheritableThreadLocal class.
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
/*
* The requested stack size for this thread, or 0 if the creator did
* not specify a stack size. It is up to the VM to do whatever it
* likes with this number; some VMs will ignore it.
*/
private final long stackSize;
/*
* JVM-private state that persists after native thread termination.
*/
private long nativeParkEventPointer;
/*
* Thread ID
*/
private final long tid;
/* For generating thread ID */
private static long threadSeqNumber;
// 這個執行緒號是整個Thread 類共享的
private static synchronized long nextThreadID() {
return ++threadSeqNumber;
}
/*
* 執行緒狀態
*/
private volatile int threadStatus;
建構函式
public Thread() {
this(null, null, "Thread-" + nextThreadNum(), 0);
}
public Thread(ThreadGroup group, Runnable target, String name,
long stackSize) {
this(group, target, name, stackSize, null, true);
}
private Thread(ThreadGroup g, Runnable target, String name,
long stackSize, AccessControlContext acc,
boolean inheritThreadLocals) {
if (name == null) {
throw new NullPointerException("name cannot be null");
}
this.name = name;
Thread parent = currentThread(); //從建立Thread 的執行緒中獲取到父執行緒
SecurityManager security = System.getSecurityManager();
if (g == null) {
/* Determine if it's an applet or not */
/* If there is a security manager, ask the security manager
what to do. */
if (security != null) {
g = security.getThreadGroup();
}
/* If the security manager doesn't have a strong opinion
on the matter, use the parent thread group. */
if (g == null) { //沒有設定執行緒組則使用當前執行緒的執行緒組
g = parent.getThreadGroup();
}
}
/* checkAccess regardless of whether or not threadgroup is
explicitly passed in. */
g.checkAccess();
/*
* Do we have the required permissions?
*/
if (security != null) {
if (isCCLOverridden(getClass())) {
security.checkPermission(
SecurityConstants.SUBCLASS_IMPLEMENTATION_PERMISSION);
}
}
//對沒有啟動執行緒進行計數
g.addUnstarted();
this.group = g;
//如果在建立執行緒時沒有設定守護執行緒,優先順序、類加器這些,全部都是當前現場的
this.daemon = parent.isDaemon();
this.priority = parent.getPriority();
if (security == null || isCCLOverridden(parent.getClass()))
this.contextClassLoader = parent.getContextClassLoader();
else
this.contextClassLoader = parent.contextClassLoader;
this.inheritedAccessControlContext =
acc != null ? acc : AccessController.getContext();
this.target = target;
setPriority(priority);
if (inheritThreadLocals && parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
/* Stash the specified stack size in case the VM cares */
this.stackSize = stackSize;
/* Set thread ID */
this.tid = nextThreadID();
}
構造方法其實都是對Thread 內部屬性進行初始化,比如執行緒名、優先順序、類加器、執行緒Id。如果沒有設定這些屬性全部繼承自當前的。讓我比較奇怪是非常重要的threadStatus
沒有賦值,而是使用了預設值,我猜想這個變數全程都是由c++來變更的,所以不必要使用Java進行賦值。
已經初始化的執行緒物件可以通過set方法去修改守護執行緒、執行緒名、優先順序。
執行緒狀態
public enum State {
/**
* Thread state for a thread which has not yet started.
*/
NEW,
/**
* Thread state for a runnable thread. A thread in the runnable
* state is executing in the Java virtual machine but it may
* be waiting for other resources from the operating system
* such as processor.
*/
RUNNABLE,
/**
* Thread state for a thread blocked waiting for a monitor lock.
* A thread in the blocked state is waiting for a monitor lock
* to enter a synchronized block/method or
* reenter a synchronized block/method after calling
* {@link Object#wait() Object.wait}.
*/
BLOCKED,
/**
* Thread state for a waiting thread.
* A thread is in the waiting state due to calling one of the
* following methods:
* <ul>
* <li>{@link Object#wait() Object.wait} with no timeout</li>
* <li>{@link #join() Thread.join} with no timeout</li>
* <li>{@link LockSupport#park() LockSupport.park}</li>
* </ul>
*
* <p>A thread in the waiting state is waiting for another thread to
* perform a particular action.
*
* For example, a thread that has called {@code Object.wait()}
* on an object is waiting for another thread to call
* {@code Object.notify()} or {@code Object.notifyAll()} on
* that object. A thread that has called {@code Thread.join()}
* is waiting for a specified thread to terminate.
*/
WAITING,
/**
* Thread state for a waiting thread with a specified waiting time.
* A thread is in the timed waiting state due to calling one of
* the following methods with a specified positive waiting time:
* <ul>
* <li>{@link #sleep Thread.sleep}</li>
* <li>{@link Object#wait(long) Object.wait} with timeout</li>
* <li>{@link #join(long) Thread.join} with timeout</li>
* <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li>
* <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li>
* </ul>
*/
TIMED_WAITING,
/**
* Thread state for a terminated thread.
* The thread has completed execution.
*/
TERMINATED;
}
執行緒狀態經常被問於面試中,幾個狀態和代表涵義大家都有記一記。
狀態 | 描述 | 場景 |
---|---|---|
NEW | Thread執行緒剛剛被建立,建立狀態 | new Thread |
RUNNABLE | 執行狀態,執行緒正在執行中 | Thread.start |
BLOCKED | 堵塞狀態 | synchronized 競爭失敗 |
WAITING | 等待,這種狀態要麼無限等待下去,要麼被喚醒 | Object.wait、Lock |
TIMED_WAITING | 等待超時,在等待時設定了時間,到時會自動喚醒 | Thread.sleep、LockSupport.parkNanos |
TERMINATED | 死亡狀態 | 執行緒已經執行完任務 |
從下圖可以發現從建立-> 執行-> 死亡 這個過程是不可逆的。
執行緒執行和停止
public synchronized void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0) //狀態必須是建立狀態 NEW ,防止一個物件多次呼叫start 方法
throw new IllegalThreadStateException();
/* Notify the group that this thread is about to be started
* so that it can be added to the group's list of threads
* and the group's unstarted count can be decremented. */
group.add(this); //加入執行緒組容器中,未開始執行緒數-1
boolean started = false;
try {
start0();
started = true;
} finally {
try {
// 進入到這裡,則start0 建立一個執行緒失敗了,要從執行緒組中刪除它,未開始執行緒再加回來
if (!started) {
group.threadStartFailed(this);
}
} catch (Throwable ignore) {
/* do nothing. If start0 threw a Throwable then
it will be passed up the call stack */
}
}
}
private native void start0();
start
方法比較簡單的,先判斷狀態是否正確,在建立之前加入到執行緒組裡面,失敗了再移除。start0 方法應該就是呼叫系統資源真正去建立一個執行緒了,而且執行緒狀態也是由這個方法修改的。
run
方法只有使用Thread來建立執行緒,並且使用Runnable傳參才會執行這裡run方法,繼承方式應該是直接呼叫子類run方法了。
public void run() {
if (target != null) { //有傳入Runnable 物件,則呼叫該物件實現run方法
target.run();
}
}
stop
方法雖然在Java2已經被官方停用了,很值得去了解下的。
@Deprecated(since="1.2")
public final void stop() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
checkAccess();
if (this != Thread.currentThread()) {
security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
}
}
// A zero status value corresponds to "NEW", it can't change to
// not-NEW because we hold the lock.
if (threadStatus != 0) { //不是NEW,執行緒已經執行了,如果被掛起了,需要對它進行喚醒
resume(); // Wake up thread if it was suspended; no-op otherwise
}
// The VM can handle all thread states
stop0(new ThreadDeath()); //停止執行緒,並且丟擲一個異常給JVM
}
private native void stop0(Object o);
看完這個方法,也沒有看出來stop()
能幹什麼,我也不是很清楚這個stop能幹什麼,我將寫幾個例子驗證功能。
建立幾個執行緒去執行下任務,執行一會後,對所有執行緒呼叫stop方法,是否會退出任務。
public class ThreadStopTest {
public static void main(String[] args) {
ThreadStopTest t = new ThreadStopTest();
Runnable r = () -> {
int i = 0;
while (i < 1000){
t.spinMills(500);
System.out.println(Thread.currentThread().getName() + " : " + i);
i++;
}
};
Thread t1 = new Thread(r);
Thread t2 = new Thread(r);
Thread t3 = new Thread(r);
t1.start();
t2.start();
t3.start();
t.spinMills(2000);
t1.stop();
t2.stop();
t3.stop();
}
public void spinMills(long millisecond){
long start = System.currentTimeMillis();
while (System.currentTimeMillis() - start < millisecond){
//自旋 ,模擬執行任務
}
}
}
執行結果
Thread-1 : 0
Thread-0 : 0
Thread-2 : 0
Thread-1 : 1
Thread-0 : 1
Thread-2 : 1
Thread-2 : 2
Thread-1 : 2
Thread-0 : 2
呼叫完stop方法,執行緒立刻退出任務,連一個異常都沒有丟擲的,真的是非常乾脆。如果有人不下心使用stop方法,出現問題都非常難排除,所以Java 官方早早就停止使用它了,詳細看官方說明
如果想優雅停止一個正在執行的執行緒,官方建議使用interrupted()
。執行緒中斷就是目標執行緒傳送一箇中斷訊號,能夠收到中斷訊號執行緒自己實現退出邏輯。簡單點說就是執行緒A在幹活,突然有個人對它做了一個動作,執行緒A在知道這個動作涵義,它會知道自己要停下來。說白這就一個動作,如果執行緒邏輯沒有處理這個動作程式碼,執行緒並不會退出的。看下Thread類裡面有那些方法。
方法 | 備註 |
---|---|
interrupt() | 中斷目標執行緒,給目標執行緒發一箇中斷訊號,執行緒被打上中斷標記 |
isInterrupted() | 判斷目標執行緒是否被中斷,不會清除中斷標記 |
interrupted | 判斷目標執行緒是否被中斷,會清除中斷標記 |
實現一個簡單例子
public static void main(String[] args) throws InterruptedException {
Runnable r = () -> {
while (!Thread.currentThread().isInterrupted()){
//do some
System.out.println(System.currentTimeMillis());
}
System.out.println("執行緒準備退出啦");
Thread.interrupted();
};
Thread t = new Thread(r);
t.start();
Thread.sleep(1000);
t.interrupt();
}
上面程式碼核心是中斷狀態,如果中斷被清除了,那程式不會跳出while迴圈的,下面改一下,新增一個sleep方法
public static void main(String[] args) throws InterruptedException {
Runnable r = () -> {
while (!Thread.currentThread().isInterrupted()){
//do some
try {
Thread.sleep(400);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(System.currentTimeMillis());
}
System.out.println("執行緒準備退出啦");
Thread.interrupted();
};
Thread t = new Thread(r);
t.start();
Thread.sleep(1000);
t.interrupt();
}
執行結果 : 傳送中斷後,Thread.sleep直接丟擲一個異常,並不會跳出迴圈。
因為sleep會響應中斷,丟擲一箇中斷異常,再清除執行緒中斷狀態。再回到while 判斷時,中斷狀態已經被清除了,繼續迴圈下去。sleep()
是一個靜態native 方法,使當前執行的執行緒休眠指定時間,但是休眠的執行緒不會放棄監控器的鎖(synchronized),當任何執行緒要中斷當前執行緒時,會丟擲InterruptedException
異常,並且清理當前執行緒的中斷狀態。所以在方法呼叫上就會丟擲這個異常,讓呼叫者去處理中斷異常。
join和yield方法
join()
就是一個等待方法,等待當前執行緒任務執行後,再次喚醒被呼叫的執行緒,常常用來控制多執行緒任務執行順序。
/**
* Waits at most {@code millis} milliseconds for this thread to
* die. A timeout of {@code 0} means to wait forever.
*
* <p> This implementation uses a loop of {@code this.wait} calls
* conditioned on {@code this.isAlive}. As a thread terminates the
* {@code this.notifyAll} method is invoked. It is recommended that
* applications not use {@code wait}, {@code notify}, or
* {@code notifyAll} on {@code Thread} instances.
*
* @param millis
* the time to wait in milliseconds
*
* @throws IllegalArgumentException
* if the value of {@code millis} is negative
*
* @throws InterruptedException
* if any thread has interrupted the current thread. The
* <i>interrupted status</i> of the current thread is
* cleared when this exception is thrown.
*/
public final synchronized void join(final long millis)
throws InterruptedException {
if (millis > 0) {
if (isAlive()) { //這裡獲取執行緒狀態,只是不是開始和死亡就算alive了
final long startTime = System.nanoTime();
long delay = millis;
do {
wait(delay);
} while (isAlive() && (delay = millis -
TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startTime)) > 0); //在指定時間內沉睡
}
} else if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
throw new IllegalArgumentException("timeout value is negative");
}
}
想了解方法主要看方法註釋就行,在指定時間內等待被呼叫者的執行緒死亡,如果沒有死亡時間到了會自行喚醒,如果時間為0則永遠等待下去,直到執行執行緒執行完任務。喚醒是由notifyAll執行的,但是沒看見在哪裡執行這個方法。查了一下資料知道每個執行緒執行完成後都會呼叫exit()方法,在exit會呼叫notifyAll。yield()
: 單詞翻譯過來就是讓步的意思。主要作用當執行緒獲取到執行權時,呼叫這個方法會主動讓出執行器,它跟上面wait、sleep 不同,執行緒狀態是沒有改變的,此時任然是RUN。比如一個執行緒獲取鎖失敗了,這時執行緒什麼不能幹,獲取鎖本身是很快,此時將執行緒掛起了,有點得不償失,不如此時讓出CPU執行器,讓其他執行緒去執行。既不會浪費CPU寶貴時間,也不需要太耗費效能。這個方法經常用於java.util.concurrent.locks
包下同步方法,看過併發工具類的同學應該都認識它。
執行緒間協作
wait方法讓當前執行緒進入等待狀態(WAITING),並且釋放監控鎖,只有當其他執行緒呼叫notify或者notifyAll才會喚醒執行緒。
notify喚醒一個在等待狀態的執行緒,重新進入RUNNABLE狀態。
notifyAll喚醒所有正在等待狀態的執行緒,重新進入RUNNABLE狀態。
上面三個方法都必須在監控鎖(synchronized)下使用,不然會丟擲IllegalMonitorStateException。
wait、notify 兩個方法結合就可以實現執行緒之間協作。比如最經典的生產者-消費者模型: 當上遊消費者傳送傳送資訊太多,導致佇列擠壓已經滿了,這時消費者這邊可以使用wait,讓生產者停下里,當消費者已經開始消費了,此時佇列已經被消費走一個資訊了,有空間了,消費者可以呼叫notify,讓上游生產者繼續運作起來。當佇列裡面資訊已經被消費完時,消費者會呼叫wait,讓執行緒進入等待中,當上遊執行緒有資訊傳送到佇列時,此時佇列中資訊就不是全空的了,就可以呼叫wait 喚醒一個等待消費者。這樣就可以形成執行緒之間相互通訊的效果了。
簡單實現消費者-生產者模型
public void push(T t){
synchronized (lock){
size++;
if (size == QUEUE_CAPACTIY) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lock.notify();
//入佇列中
}
}
public T poll(){
synchronized (lock){
size--;
if (size == 0) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lock.notify();
return T;
}
}
Callable和 Thread關係
我們知道了所有的執行緒其實都是Thread.start去建立的,重寫run 方法達到異常執行任務,但是Callable這個介面是否也是使用Thread或者Runnable介面,主要看FutureTask
就知道如何實現了。
看下run方法
public void run() {
//如果執行緒已經被建立了,則不需要再次執行任務了
if (state != NEW ||
!RUNNER.compareAndSet(this, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable; //callable 方法實現類
if (c != null && state == NEW) { //剛剛初始化的狀態
V result;
boolean ran;
try {
result = c.call(); //執行任務
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex); //儲存異常,將等待佇列的執行緒全部喚醒過來
}
if (ran)
set(result); //儲存執行結果,將等待佇列的執行緒全部喚醒過來
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
可以看出Callable仍然是使用Thread來建立執行緒的,內部通過維護state來判斷任務狀態,在run 方法中執行call方法,儲存異常和執行結果。
看下get() 如何獲取執行結果的吧
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING) //還在執行中
s = awaitDone(false, 0L); //等待任務執行完成或者中斷,會堵塞呼叫執行緒
return report(s);
}
/**
* Awaits completion or aborts on interrupt or timeout.
*
* @param timed true if use timed waits
* @param nanos time to wait, if timed
* @return state upon completion or at timeout
*/
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
// The code below is very delicate, to achieve these goals:
// - call nanoTime exactly once for each call to park
// - if nanos <= 0L, return promptly without allocation or nanoTime
// - if nanos == Long.MIN_VALUE, don't underflow
// - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
// and we suffer a spurious wakeup, we will do no worse than
// to park-spin for a while
long startTime = 0L; // Special value 0L means not yet parked
WaitNode q = null;
boolean queued = false;
for (;;) {
int s = state;
if (s > COMPLETING) { //如果狀態已經有執行中變成其他 ,直接將狀態返回
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) //正在執行中,讓出CPU執行權,而不是變換執行緒狀態
// We may have already promised (via isDone) that we are done
// so never return empty-handed or throw InterruptedException
Thread.yield();
else if (Thread.interrupted()) { //處理執行緒中斷,退出自旋
removeWaiter(q); //刪除佇列中的執行緒
throw new InterruptedException();
}
else if (q == null) {
if (timed && nanos <= 0L)
return s;
q = new WaitNode();
}
else if (!queued) //將等待結果執行緒放入一個佇列中,其實這個佇列就是來處理等待結果執行緒的中斷的
queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
else if (timed) {
final long parkNanos;
if (startTime == 0L) { // first time
startTime = System.nanoTime();
if (startTime == 0L)
startTime = 1L;
parkNanos = nanos;
} else {
long elapsed = System.nanoTime() - startTime;
if (elapsed >= nanos) {
removeWaiter(q);
return state;
}
parkNanos = nanos - elapsed;
}
// nanoTime may be slow; recheck before parking
if (state < COMPLETING) //任務沒有啟動,掛起等待執行緒
LockSupport.parkNanos(this, parkNanos);
}
else
LockSupport.park(this); //任務沒有開始,掛起呼叫者,任務完成後會將它喚醒的
}
}
現在基本就明瞭,使用run 呼叫call方法,將執行結果儲存起來,然後get 方法這邊使用自旋方法等待執行結果,並且使用佇列將等待的執行緒儲存起來,來處理執行緒的喚醒、中斷。
總結
這裡簡單說了Thread的構造方法,屬性設定,比較重要就是執行緒幾個狀態,狀態流轉、執行緒啟動停止,中斷處理,幾個常用方法的介紹。簡單說了下FutureTask
實現原理,結合上面提到的知識點,上面提到這些知識都是挺重要的,你可以看到大部分Java併發類都用到這些知識來開發的,頻繁出現在面試中也是可以理解的。