Unknown Treasure(hdu5446)

weixin_30588675發表於2020-04-05

Unknown Treasure

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2112    Accepted Submission(s): 771


Problem Description
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
 

 

Input
On the first line there is an integer T(T20) representing the number of test cases.

Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
 
Output
For each test case output the correct combination on a line.
 

 

Sample Input
1
9 5 2
3 5
Sample Output
6
題意:就是讓你求組合數C(n,m)的值模M=p1*p2*...pk的值這寫p;
思路:中國剩餘定理+lucas定理;
因為組合數比較大,模數乘起來也很大,所以我們先用lucas定理求出對每個模數所求得的模,然後再通過中國剩餘定理求對那個大模數的模;
在使用中國剩餘定理的時候,最後那個M可能會很大,所以乘法的時候可能會爆LL,要用快速乘去處理
  1 #include<stdio.h>
  2 #include<algorithm>
  3 #include<iostream>
  4 #include<string.h>
  5 #include<stdlib.h>
  6 #include<queue>
  7 #include<map>
  8 #include<math.h>
  9 using namespace std;
 10 typedef long long LL;
 11 int mod[20];
 12 LL a[100005];
 13 LL yu[30];
 14 LL quick(LL n,LL m,LL p)
 15 {
 16         LL ans=1;
 17         while(m)
 18         {
 19                 if(m&1)
 20                 {
 21                         ans=ans*n%p;
 22                 }
 23                 n=n*n%p;
 24                 m/=2;
 25         }
 26         return ans;
 27 }
 28 LL lucas(LL n,LL m,LL p)
 29 {
 30         if(n==0)
 31         {
 32                 return 1;
 33         }
 34         else
 35         {
 36                 LL nn=n%p;
 37                 LL mm=m%p;
 38                 if(mm<nn)
 39                         return 0;
 40                 else
 41                 {
 42                         LL ni=a[mm-nn]*a[nn]%p;
 43                         ni=a[mm]*quick(ni,p-2,p)%p;
 44                         return ni*lucas(n/p,m/p,p);
 45                 }
 46         }
 47 }
 48 LL mul(LL n, LL m,LL p)
 49 {
 50         n%=p;
 51         m%=p;
 52         LL ret=0;
 53         while(m)
 54         {
 55                 if(m&1)
 56                 {
 57                         ret=ret+n;
 58                         ret%=p;
 59                 }
 60                 m>>=1;
 61                 n<<=1;
 62                 n%=p;
 63         }
 64         return ret;
 65 }
 66 int main(void)
 67 {
 68         LL n,m;
 69         int k;
 70         int t;
 71         scanf("%d",&k);
 72         int i,j;
 73         while(k--)
 74         {
 75                 scanf("%lld %lld %d",&n,&m,&t);
 76                 for(i=0; i<t; i++)
 77                 {
 78                         scanf("%d",&mod[i]);
 79                         a[0]=1;
 80                         a[1]=1;
 81                         for(j=2; j<mod[i]; j++)
 82                         {
 83                                 a[j]=a[j-1]*j%mod[i];
 84                         }
 85                         yu[i]=lucas(m,n,mod[i]);
 86                 }
 87                 LL sum=1;
 88                 for(i=0; i<t; i++)
 89                 {
 90                         sum*=(LL)mod[i];
 91                 }
 92                 LL acc=0;
 93                 for(i=0; i<t; i++)
 94                 {
 95                         LL kk=sum/mod[i];
 96                         LL ni=quick(kk%mod[i],mod[i]-2,mod[i]);
 97                         acc=(acc+mul(yu[i],mul(kk,ni,sum),sum)%sum)%sum;
 98 
 99                 }
100                 acc=acc%sum+sum;
101                 acc%=sum;
102                 printf("%lld\n",acc);
103         }
104         return 0;
105 }

 

轉載於:https://www.cnblogs.com/zzuli2sjy/p/5709791.html

相關文章