CartPole小車擺修復版程式碼

范哥范小飞發表於2024-05-30

由於萬惡的python torch元件更新,還修改api,導致舊的版本程式碼不適應新版本庫。除錯半天,最後給出當前最新版本下的小車擺程式碼:
2024年5月30日
python 3.11
tensorflow 2.14.0

程式碼來源https://hrl.boyuai.com/chapter/2/dqn%E7%AE%97%E6%B3%95/#74-dqn-%E4%BB%A3%E7%A0%81%E5%AE%9E%E8%B7%B5

點選檢視程式碼
import random
import gym
import numpy as np
import collections
from tqdm import tqdm
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import rl_utils

class ReplayBuffer:
    ''' 經驗回放池 '''
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)  # 佇列,先進先出

    def add(self, state, action, reward, next_state, done):  # 將資料加入buffer
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size):  # 從buffer中取樣資料,數量為batch_size
        transitions = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = zip(*transitions)
        return np.array(state), action, reward, np.array(next_state), done

    def size(self):  # 目前buffer中資料的數量
        return len(self.buffer)

class Qnet(torch.nn.Module):
    ''' 只有一層隱藏層的Q網路 '''
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(Qnet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))  # 隱藏層使用ReLU啟用函式
        return self.fc2(x)

class DQN:
    ''' DQN演算法 '''
    def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma,
                 epsilon, target_update, device):
        self.action_dim = action_dim
        self.q_net = Qnet(state_dim, hidden_dim,
                          self.action_dim).to(device)  # Q網路
        # 目標網路
        self.target_q_net = Qnet(state_dim, hidden_dim,
                                 self.action_dim).to(device)
        # 使用Adam最佳化器
        self.optimizer = torch.optim.Adam(self.q_net.parameters(),
                                          lr=learning_rate)
        self.gamma = gamma  # 折扣因子
        self.epsilon = epsilon  # epsilon-貪婪策略
        self.target_update = target_update  # 目標網路更新頻率
        self.count = 0  # 計數器,記錄更新次數
        self.device = device

    def take_action(self, state):  # epsilon-貪婪策略採取動作
        if np.random.random() < self.epsilon:
            action = np.random.randint(self.action_dim)
        else:
            state = torch.tensor(state, dtype=torch.float).to(self.device)
            action = self.q_net(state).argmax().item()
        return action

    def update(self, transition_dict):
        states = torch.tensor(transition_dict['states'],
                              dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(
            self.device)
        rewards = torch.tensor(transition_dict['rewards'],
                               dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(transition_dict['next_states'],
                                   dtype=torch.float).to(self.device)
        dones = torch.tensor(transition_dict['dones'],
                             dtype=torch.float).view(-1, 1).to(self.device)

        q_values = self.q_net(states).gather(1, actions)  # Q值
        # 下個狀態的最大Q值
        max_next_q_values = self.target_q_net(next_states).max(1)[0].view(
            -1, 1)
        q_targets = rewards + self.gamma * max_next_q_values * (1 - dones
                                                                )  # TD誤差目標
        dqn_loss = torch.mean(F.mse_loss(q_values, q_targets))  # 均方誤差損失函式
        self.optimizer.zero_grad()  # PyTorch中預設梯度會累積,這裡需要顯式將梯度置為0
        dqn_loss.backward()  # 反向傳播更新引數
        self.optimizer.step()

        if self.count % self.target_update == 0:
            self.target_q_net.load_state_dict(
                self.q_net.state_dict())  # 更新目標網路
        self.count += 1

lr = 2e-3
num_episodes = 500
hidden_dim = 128
gamma = 0.98
epsilon = 0.01
target_update = 10
buffer_size = 10000
minimal_size = 500
batch_size = 64
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")

env_name = 'CartPole-v1'
env = gym.make(env_name, render_mode="human")
random.seed(0)
np.random.seed(0)

torch.manual_seed(0)
replay_buffer = ReplayBuffer(buffer_size)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon,
            target_update, device)





return_list = []
for i in range(10):
    with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
        for i_episode in range(int(num_episodes / 10)):
            episode_return = 0
            state = env.reset()[0]
            done = False
            while not done:
                action = agent.take_action(state)
                next_state, reward, done, _ ,__= env.step(action)
                replay_buffer.add(state, action, reward, next_state, done)
                state = next_state
                episode_return += reward
                # 當buffer資料的數量超過一定值後,才進行Q網路訓練
                if replay_buffer.size() > minimal_size:
                    b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                    transition_dict = {
                        'states': b_s,
                        'actions': b_a,
                        'next_states': b_ns,
                        'rewards': b_r,
                        'dones': b_d
                    }
                    agent.update(transition_dict)
            return_list.append(episode_return)
            if (i_episode + 1) % 10 == 0:
                pbar.set_postfix({
                    'episode':
                    '%d' % (num_episodes / 10 * i + i_episode + 1),
                    'return':
                    '%.3f' % np.mean(return_list[-10:])
                })
            pbar.update(1)

episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DQN on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DQN on {}'.format(env_name))
plt.show()

相關文章