codeforce 447C
http://codeforces.com/contest/447/problem/C
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6 7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.
大體思路:我的思路是先找出以每個a[i]為開頭和結尾的最長公共子序列的長度,然後依次列舉每個a[i],具體見程式碼。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
int a[100006];
int dp1[100006],dp2[100006];
int n;
int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int maxn=1;
dp1[1]=1;
for(int i=2;i<=n;i++)
{
if(a[i]>a[i-1])
maxn++;
else
maxn=1;
dp1[i]=maxn;
}
maxn=1;
dp2[n]=1;
for(int i=n-1;i>=1;i--)
{
if(a[i]<a[i+1])
maxn++;
else
maxn=1;
dp2[i]=maxn;
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(i==1)
ans=max(ans,dp2[i]);
else if(i==n)
ans=max(ans,dp1[i]);
else if(a[i+1]-a[i-1]>1)
ans=max(ans,dp1[i-1]+dp2[i+1]);
else
ans=max(ans,max(dp1[i],dp2[i]));
}
if(ans<n)
ans++;
printf("%d\n",ans);
}
return 0;
}