點贊收藏:PyTorch常用程式碼段整理合集

机器之心發表於2019-04-25

眾所周知,程式猿在寫程式碼時通常會在網上搜尋大量資料,其中大部分是程式碼段。然而,這項工作常常令人心累身疲,耗費大量時間。所以,今天小編轉載了知乎上的一篇文章,介紹了一些常用PyTorch程式碼段,希望能夠為奮戰在電腦桌前的眾多程式猿們提供幫助!

本文程式碼基於 PyTorch 1.0 版本,需要用到以下包

import collections
import os
import shutil
import tqdm

import numpy as np
import PIL.Image
import torch
import torchvision

基礎配置

檢查 PyTorch 版本

torch.__version__               # PyTorch version
torch.version.cuda              # Corresponding CUDA version
torch.backends.cudnn.version()  # Corresponding cuDNN version
torch.cuda.get_device_name(0)   # GPU type

更新 PyTorch

PyTorch 將被安裝在 anaconda3/lib/python3.7/site-packages/torch/目錄下。

conda update pytorch torchvision -c pytorch

固定隨機種子

torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

指定程式執行在特定 GPU 卡上

在命令列指定環境變數

CUDA_VISIBLE_DEVICES=0,1 python train.py

或在程式碼中指定

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

判斷是否有 CUDA 支援

torch.cuda.is_available()

設定為 cuDNN benchmark 模式

Benchmark 模式會提升計算速度,但是由於計算中有隨機性,每次網路前饋結果略有差異。

torch.backends.cudnn.benchmark = True

如果想要避免這種結果波動,設定

torch.backends.cudnn.deterministic = True

清除 GPU 儲存

有時 Control-C 中止執行後 GPU 儲存沒有及時釋放,需要手動清空。在 PyTorch 內部可以

torch.cuda.empty_cache()

或在命令列可以先使用 ps 找到程式的 PID,再使用 kill 結束該程序

ps aux | grep pythonkill -9 [pid]

或者直接重置沒有被清空的 GPU

nvidia-smi --gpu-reset -i [gpu_id]

張量處理

張量基本資訊

tensor.type()   # Data type
tensor.size()   # Shape of the tensor. It is a subclass of Python tuple
tensor.dim()    # Number of dimensions.

資料型別轉換

# Set default tensor type. Float in PyTorch is much faster than double.
torch.set_default_tensor_type(torch.FloatTensor)

# Type convertions.
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor 與 np.ndarray 轉換

# torch.Tensor -> np.ndarray.
ndarray = tensor.cpu().numpy()

# np.ndarray -> torch.Tensor.
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float()  # If ndarray has negative stride

torch.Tensor 與 PIL.Image 轉換

PyTorch 中的張量預設採用 N×D×H×W 的順序,並且資料範圍在 [0, 1],需要進行轉置和規範化。

# torch.Tensor -> PIL.Image.
image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255
    ).byte().permute(1, 2, 0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way

# PIL.Image -> torch.Tensor.
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))
    ).permute(2, 0, 1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path))  # Equivalently way

np.ndarray 與 PIL.Image 轉換

# np.ndarray -> PIL.Image.
image = PIL.Image.fromarray(ndarray.astypde(np.uint8))

# PIL.Image -> np.ndarray.
ndarray = np.asarray(PIL.Image.open(path))

從只包含一個元素的張量中提取值

這在訓練時統計 loss 的變化過程中特別有用。否則這將累積計算圖,使 GPU 儲存佔用量越來越大。

value = tensor.item()

張量形變

張量形變常常需要用於將卷積層特徵輸入全連線層的情形。相比 torch.view,torch.reshape 可以自動處理輸入張量不連續的情況。

tensor = torch.reshape(tensor, shape)

打亂順序

tensor = tensor[torch.randperm(tensor.size(0))]  # Shuffle the first dimension

水平翻轉

PyTorch 不支援 tensor[::-1] 這樣的負步長操作,水平翻轉可以用張量索引實現。

# Assume tensor has shape N*D*H*W.tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]

複製張量

有三種複製的方式,對應不同的需求。

# Operation                 |  New/Shared memory | Still in computation graph |
tensor.clone()            # |        New         |          Yes               |
tensor.detach()           # |      Shared        |          No                |
tensor.detach.clone()()   # |        New         |          No                |

拼接張量

注意 torch.cat 和 torch.stack 的區別在於 torch.cat 沿著給定的維度拼接,而 torch.stack 會新增一維。例如當引數是 3 個 10×5 的張量,torch.cat 的結果是 30×5 的張量,而 torch.stack 的結果是 3×10×5 的張量。

tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

將整數標記轉換成獨熱(one-hot)編碼

PyTorch 中的標記預設從 0 開始。

N = tensor.size(0)
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零/零元素

torch.nonzero(tensor)               # Index of non-zero elements
torch.nonzero(tensor == 0)          # Index of zero elements
torch.nonzero(tensor).size(0)       # Number of non-zero elements
torch.nonzero(tensor == 0).size(0)  # Number of zero elements

張量擴充套件

# Expand tensor of shape 64*512 to shape 64*512*7*7.
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩陣乘法

# Matrix multiplication: (m*n) * (n*p) -> (m*p).
result = torch.mm(tensor1, tensor2)

# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p).
result = torch.bmm(tensor1, tensor2)

# Element-wise multiplication.
result = tensor1 * tensor2

計算兩組資料之間的兩兩歐式距離

# X1 is of shape m*d.
X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d)
# X2 is of shape n*d.
X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d)
# dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2)
dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))

模型定義

卷積層

最常用的卷積層配置是

conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)

如果卷積層配置比較複雜,不方便計算輸出大小時,可以利用如下視覺化工具輔助

連結:https://ezyang.github.io/convolution-visualizer/index.html

0GAP(Global average pooling)層

gap = torch.nn.AdaptiveAvgPool2d(output_size=1)

雙線性匯合(bilinear pooling)

X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization
X = torch.nn.functional.normalize(X)                  # L2 normalization

多卡同步 BN(Batch normalization)

當使用 torch.nn.DataParallel 將程式碼執行在多張 GPU 卡上時,PyTorch 的 BN 層預設操作是各卡上資料獨立地計算均值和標準差,同步 BN 使用所有卡上的資料一起計算 BN 層的均值和標準差,緩解了當批次大小(batch size)比較小時對均值和標準差估計不準的情況,是在目標檢測等任務中一個有效的提升效能的技巧。

連結:https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

類似 BN 滑動平均

如果要實現類似 BN 滑動平均的操作,在 forward 函式中要使用原地(inplace)操作給滑動平均賦值。

class BN(torch.nn.Module)
    def __init__(self):
        ...
        self.register_buffer('running_mean', torch.zeros(num_features))

    def forward(self, X):
        ...
        self.running_mean += momentum * (current - self.running_mean)

計算模型整體引數量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

類似 Keras 的 model.summary() 輸出模型資訊

連結:https://github.com/sksq96/pytorch-summary

模型權值初始化

注意 model.modules() 和 model.children() 的區別:model.modules() 會迭代地遍歷模型的所有子層,而 model.children() 只會遍歷模型下的一層。

# Common practise for initialization.
for layer in model.modules():
    if isinstance(layer, torch.nn.Conv2d):
        torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',
                                      nonlinearity='relu')
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.BatchNorm2d):
        torch.nn.init.constant_(layer.weight, val=1.0)
        torch.nn.init.constant_(layer.bias, val=0.0)
    elif isinstance(layer, torch.nn.Linear):
        torch.nn.init.xavier_normal_(layer.weight)
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)

# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

部分層使用預訓練模型

注意如果儲存的模型是 torch.nn.DataParallel,則當前的模型也需要是

model.load_state_dict(torch.load('model,pth'), strict=False)

將在 GPU 儲存的模型載入到 CPU

model.load_state_dict(torch.load('model,pth', map_location='cpu'))

資料準備、特徵提取與微調

得到影片資料基本資訊

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()

TSN 每段(segment)取樣一幀影片

K = self._num_segments
if is_train:
    if num_frames > K:
        # Random index for each segment.
        frame_indices = torch.randint(
            high=num_frames // K, size=(K,), dtype=torch.long)
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.randint(
            high=num_frames, size=(K - num_frames,), dtype=torch.long)
        frame_indices = torch.sort(torch.cat((
            torch.arange(num_frames), frame_indices)))[0]
else:
    if num_frames > K:
        # Middle index for each segment.
        frame_indices = num_frames / K // 2
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.sort(torch.cat((                              
            torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

提取 ImageNet 預訓練模型某層的卷積特徵

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
    list(model.named_children())[:-1]))

with torch.no_grad():
    model.eval()
    conv_representation = model(image)

提取 ImageNet 預訓練模型多層的卷積特徵

class FeatureExtractor(torch.nn.Module):
    """Helper class to extract several convolution features from the given
    pre-trained model.

    Attributes:
        _model, torch.nn.Module.
        _layers_to_extract, list<str> or set<str>

    Example:
        >>> model = torchvision.models.resnet152(pretrained=True)
        >>> model = torch.nn.Sequential(collections.OrderedDict(
                list(model.named_children())[:-1]))
        >>> conv_representation = FeatureExtractor(
                pretrained_model=model,
                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
    """
    def __init__(self, pretrained_model, layers_to_extract):
        torch.nn.Module.__init__(self)
        self._model = pretrained_model
        self._model.eval()
        self._layers_to_extract = set(layers_to_extract)

    def forward(self, x):
        with torch.no_grad():
            conv_representation = []
            for name, layer in self._model.named_children():
                x = layer(x)
                if name in self._layers_to_extract:
                    conv_representation.append(x)
            return conv_representation

其他預訓練模型

連結:https://github.com/Cadene/pretrained-models.pytorch

微調全連線層

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
model.fc = nn.Linear(512, 100)  # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

以較大學習率微調全連線層,較小學習率微調卷積層

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
              {'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

模型訓練

常用訓練和驗證資料預處理

其中 ToTensor 操作會將 PIL.Image 或形狀為 H×W×D,數值範圍為 [0, 255] 的 np.ndarray 轉換為形狀為 D×H×W,數值範圍為 [0.0, 1.0] 的 torch.Tensor。

train_transform = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(size=224,
                                             scale=(0.08, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                     std=(0.229, 0.224, 0.225)),
 ])
 val_transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize(224),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                     std=(0.229, 0.224, 0.225)),
])

訓練基本程式碼框架

for t in epoch(80):
    for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):
        images, labels = images.cuda(), labels.cuda()
        scores = model(images)
        loss = loss_function(scores, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

標記平滑(label smoothing)

for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()
    N = labels.size(0)
    # C is the number of classes.
    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)

    score = model(images)
    log_prob = torch.nn.functional.log_softmax(score, dim=1)
    loss = -torch.sum(log_prob * smoothed_labels) / N
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

Mixup

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()

    # Mixup images.
    lambda_ = beta_distribution.sample([]).item()
    index = torch.randperm(images.size(0)).cuda()
    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]

    # Mixup loss.    
    scores = model(mixed_images)
    loss = (lambda_ * loss_function(scores, labels) 
            + (1 - lambda_) * loss_function(scores, labels[index]))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

L1 正則化

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ...  # Standard cross-entropy loss
for param in model.parameters():
    loss += torch.sum(torch.abs(param))
loss.backward()

不對偏置項進行 L2 正則化/權值衰減(weight decay)

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},                
              {'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

計算 Softmax 輸出的準確率

score = model(images)
prediction = torch.argmax(score, dim=1)
num_correct = torch.sum(prediction == labels).item()
accuruacy = num_correct / labels.size(0)

視覺化模型前饋的計算圖

連結:https://github.com/szagoruyko/pytorchviz

視覺化學習曲線

有 Facebook 自己開發的 Visdom 和 Tensorboard 兩個選擇。

https://github.com/facebookresearch/visdom

https://github.com/lanpa/tensorboardX

# Example using Visdom.
vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
assert self._visdom.check_connection()
self._visdom.close()
options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(
    loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},
    acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},
    lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})

for t in epoch(80):
    tran(...)
    val(...)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
             name='train', win='Loss', update='append', opts=options.loss)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
             name='val', win='Loss', update='append', opts=options.loss)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
             name='train', win='Accuracy', update='append', opts=options.acc)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
             name='val', win='Accuracy', update='append', opts=options.acc)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
             win='Learning rate', update='append', opts=options.lr)

得到當前學習率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']

# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
    all_lr.append(param_group['lr'])

學習率衰減

# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
    train(...); val(...)
    scheduler.step(val_acc)

# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
    scheduler.step()    
    train(...); val(...)

# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
    scheduler.step()
    train(...); val(...)

儲存與載入斷點

注意為了能夠恢復訓練,我們需要同時儲存模型和最佳化器的狀態,以及當前的訓練輪數。

# Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(best_acc, current_acc)
checkpoint = {
    'best_acc': best_acc,    
    'epoch': t + 1,
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.pth.tar')
torch.save(checkpoint, model_path)
if is_best:
    shutil.copy('checkpoint.pth.tar', model_path)

# Load checkpoint.
if resume:
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    assert os.path.isfile(model_path)
    checkpoint = torch.load(model_path)
    best_acc = checkpoint['best_acc']
    start_epoch = checkpoint['epoch']
    model.load_state_dict(checkpoint['model'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    print('Load checkpoint at epoch %d.' % start_epoch)

計算準確率、查準率(precision)、查全率(recall)

# data['label'] and data['prediction'] are groundtruth label and prediction 
# for each image, respectively.
accuracy = np.mean(data['label'] == data['prediction']) * 100

# Compute recision and recall for each class.
for c in range(len(num_classes)):
    tp = np.dot((data['label'] == c).astype(int),
                (data['prediction'] == c).astype(int))
    tp_fp = np.sum(data['prediction'] == c)
    tp_fn = np.sum(data['label'] == c)
    precision = tp / tp_fp * 100
    recall = tp / tp_fn * 100

PyTorch 其他注意事項

模型定義

  • 建議有引數的層和匯合(pooling)層使用 torch.nn 模組定義,啟用函式直接使用 torch.nn.functional。torch.nn 模組和 torch.nn.functional 的區別在於,torch.nn 模組在計算時底層呼叫了 torch.nn.functional,但 torch.nn 模組包括該層引數,還可以應對訓練和測試兩種網路狀態。使用 torch.nn.functional 時要注意網路狀態,如

def forward(self, x):
    ...
    x = torch.nn.functional.dropout(x, p=0.5, training=self.training)
  • model(x) 前用 model.train() 和 model.eval() 切換網路狀態。

  • 不需要計算梯度的程式碼塊用 with torch.no_grad() 包含起來。model.eval() 和 torch.no_grad() 的區別在於,model.eval() 是將網路切換為測試狀態,例如 BN 和隨機失活(dropout)在訓練和測試階段使用不同的計算方法。torch.no_grad() 是關閉 PyTorch 張量的自動求導機制,以減少儲存使用和加速計算,得到的結果無法進行 loss.backward()。

  • torch.nn.CrossEntropyLoss 的輸入不需要經過 Softmax。torch.nn.CrossEntropyLoss 等價於 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

  • loss.backward() 前用 optimizer.zero_grad() 清除累積梯度。optimizer.zero_grad() 和 model.zero_grad() 效果一樣。

PyTorch 效能與除錯

  • torch.utils.data.DataLoader 中儘量設定 pin_memory=True,對特別小的資料集如 MNIST 設定 pin_memory=False 反而更快一些。num_workers 的設定需要在實驗中找到最快的取值。

  • 用 del 及時刪除不用的中間變數,節約 GPU 儲存。

  • 使用 inplace 操作可節約 GPU 儲存,如

x = torch.nn.functional.relu(x, inplace=True)
  • 減少 CPU 和 GPU 之間的資料傳輸。例如如果你想知道一個 epoch 中每個 mini-batch 的 loss 和準確率,先將它們累積在 GPU 中等一個 epoch 結束之後一起傳輸回 CPU 會比每個 mini-batch 都進行一次 GPU 到 CPU 的傳輸更快。

  • 使用半精度浮點數 half() 會有一定的速度提升,具體效率依賴於 GPU 型號。需要小心數值精度過低帶來的穩定性問題。

  • 時常使用 assert tensor.size() == (N, D, H, W) 作為除錯手段,確保張量維度和你設想中一致。

  • 除了標記 y 外,儘量少使用一維張量,使用 n*1 的二維張量代替,可以避免一些意想不到的一維張量計算結果。

  • 統計程式碼各部分耗時

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
    ...
print(profile)

或者在命令列執行

python -m torch.utils.bottleneck main.py

致謝

感謝 @些許流年和@El tnoto的勘誤。由於作者才疏學淺,更兼時間和精力所限,程式碼中錯誤之處在所難免,敬請讀者批評指正。

參考資料

  • PyTorch 官方程式碼:pytorch/examples (https://link.zhihu.com/?target=https%3A//github.com/pytorch/examples)

  • PyTorch 論壇:PyTorch Forums (https://link.zhihu.com/?target=https%3A//discuss.pytorch.org/latest%3Forder%3Dviews)

  • PyTorch 文件:http://pytorch.org/docs/stable/index.html (https://link.zhihu.com/?target=http%3A//pytorch.org/docs/stable/index.html)

  • 其他基於 PyTorch 的公開實現程式碼,無法一一列舉

張皓:南京大學計算機系機器學習與資料探勘所(LAMDA)碩士生,研究方向為計算機視覺和機器學習,特別是視覺識別和深度學習。個人主頁:http://lamda.nju.edu.cn/zhangh/

原知乎連結:https://zhuanlan.zhihu.com/p/59205847?

相關文章