FastQC——測序資料質量分析
下載安裝與配置
cd ~
wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.3.zip
unzip fastqc_v0.11.3.zip
cd FastQC/
sudo gedit /etc/profile
新增檔案末尾並儲存: export PATH=/home/WANGLAILAI_ubuntu/FastQC:$PATH
sudo source /etc/profile
fastqc -h
FastQC - A high throughput sequence QC analysis tool
SYNOPSIS
fastqc seqfile1 seqfile2 .. seqfileN
fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam]
[-c contaminant file] seqfile1 .. seqfileN
DESCRIPTION
FastQC reads a set of sequence files and produces from each one a quality
control report consisting of a number of different modules, each one of
which will help to identify a different potential type of problem in your
data.
If no files to process are specified on the command line then the program
will start as an interactive graphical application. If files are provided
on the command line then the program will run with no user interaction
required. In this mode it is suitable for inclusion into a standardised
analysis pipeline.
The options for the program as as follows:
-h --help Print this help file and exit
-v --version Print the version of the program and exit
-o --outdir Create all output files in the specified output directory.
Please note that this directory must exist as the program
will not create it. If this option is not set then the
output file for each sequence file is created in the same
directory as the sequence file which was processed.
--casava Files come from raw casava output. Files in the same sample
group (differing only by the group number) will be analysed
as a set rather than individually. Sequences with the filter
flag set in the header will be excluded from the analysis.
Files must have the same names given to them by casava
(including being gzipped and ending with .gz) otherwise they
won't be grouped together correctly.
--nano Files come from naopore sequences and are in fast5 format. In
this mode you can pass in directories to process and the program
will take in all fast5 files within those directories and produce
a single output file from the sequences found in all files.
--nofilter If running with --casava then don't remove read flagged by
casava as poor quality when performing the QC analysis.
--extract If set then the zipped output file will be uncompressed in
the same directory after it has been created. By default
this option will be set if fastqc is run in non-interactive
mode.
-j --java Provides the full path to the java binary you want to use to
launch fastqc. If not supplied then java is assumed to be in
your path.
--noextract Do not uncompress the output file after creating it. You
should set this option if you do not wish to uncompress
the output when running in non-interactive mode.
--nogroup Disable grouping of bases for reads >50bp. All reports will
show data for every base in the read. WARNING: Using this
option will cause fastqc to crash and burn if you use it on
really long reads, and your plots may end up a ridiculous size.
You have been warned!
-f --format Bypasses the normal sequence file format detection and
forces the program to use the specified format. Valid
formats are bam,sam,bam_mapped,sam_mapped and fastq
-t --threads Specifies the number of files which can be processed
simultaneously. Each thread will be allocated 250MB of
memory so you shouldn't run more threads than your
available memory will cope with, and not more than
6 threads on a 32 bit machine
-c Specifies a non-default file which contains the list of
--contaminants contaminants to screen overrepresented sequences against.
The file must contain sets of named contaminants in the
form name[tab]sequence. Lines prefixed with a hash will
be ignored.
-a Specifies a non-default file which contains the list of
--adapters adapter sequences which will be explicity searched against
the library. The file must contain sets of named adapters
in the form name[tab]sequence. Lines prefixed with a hash
will be ignored.
-l Specifies a non-default file which contains a set of criteria
--limits which will be used to determine the warn/error limits for the
various modules. This file can also be used to selectively
remove some modules from the output all together. The format
needs to mirror the default limits.txt file found in the
Configuration folder.
-k --kmers Specifies the length of Kmer to look for in the Kmer content
module. Specified Kmer length must be between 2 and 10. Default
length is 7 if not specified.
-q --quiet Supress all progress messages on stdout and only report errors.
-d --dir Selects a directory to be used for temporary files written when
generating report images. Defaults to system temp directory if
not specified.
BUGS
Any bugs in fastqc should be reported either to simon.andrews@babraham.ac.uk
or in www.bioinformatics.babraham.ac.uk/bugzilla/
例項執行:
我們需要測序檔案FASTQ,為了方便,直接使用 MATLAB 生物資訊學工具箱中的資料,windows下:
C:\Program Files\MATLAB\R2017a\toolbox\bioinfodata\SRR005164_1_50.fastq
在/FastQC
下新建目錄/mytest
並且將SRR005164_1_50.fastq
拷貝到其中
fastqc -t 2 ./mytest/SRR005164_1_50.fastq -o ./mytest
cd /mytest
unzip SRR005164_1_50_fastqc.zip
tree
輸出:
.
├── SRR005164_1_50.fastq
├── SRR005164_1_50_fastqc
│ ├── fastqc_data.txt(資料結果檔案,後來被視覺化成 Images 下的圖片)
│ ├── fastqc.fo(額外說明檔案)
│ ├── fastqc_report.html (HTML報告檔案)
│ ├── Icons
│ │ ├── error.png
│ │ ├── fastqc_icon.png
│ │ ├── tick.png
│ │ └── warning.png
│ ├── Images
│ │ ├── adapter_content.png
│ │ ├── duplication_levels.png
│ │ ├── kmer_profiles.png
│ │ ├── per_base_n_content.png
│ │ ├── per_base_quality.png
│ │ ├── per_base_sequence_content.png
│ │ ├── per_sequence_gc_content.png
│ │ ├── per_sequence_quality.png
│ │ └── sequence_length_distribution.png
│ └── summary.txt (總結檔案)
├── SRR005164_1_50_fastqc.html
└── SRR005164_1_50_fastqc.zip
開啟SRR005164_1_50_fastqc.html
報告檔案,有
- Basic Statistics(基礎統計資訊)
- Per base sequence quality(平均鹼基質量)
- Per sequence quality scores (平均每條序列質量)
- Per base sequence content (每條序列平均鹼基組成)
- Per sequence GC content (每個序列GC含量)
- Per base N content (每個位點N含量)
- Sequence Length Distribution (序列長度分佈)
- Sequence Duplication Levels (序列重複水平)
- Overrepresented sequences (過度呈現的序列)
- Adapter Content (接頭分佈)
- Kmer Content(K值分佈)
相關文章
- R語言資料質量分析R語言
- 雷達資料傳輸質量分析
- FastQC結果詳解AST
- 東軟SaCa DataInsight----汽車車身質量分析檢測解決方案AI
- 3000份水稻重測序資料全部公開
- 讀資料質量管理:資料可靠性與資料質量問題解決之道06資料測試
- 時序資料庫資料庫
- 貨拉拉大資料測試質效提升之路大資料
- 讀資料質量管理:資料可靠性與資料質量問題解決之道07異常檢測
- 資料治理--資料質量
- 時序資料庫influxdb資料庫UX
- 讀資料質量管理:資料可靠性與資料質量問題解決之道08擴充套件異常檢測套件
- 讀資料質量管理:資料可靠性與資料質量問題解決之道01資料質量
- 保證資料庫質量安全:從0開始的資料庫測試資料庫
- php與資料庫連線如何實現資料的順序和倒序PHP資料庫
- 如何將高通量測序原始資料上傳到NCBI的SRA(The Sequence Read Archive)資料庫?Hive資料庫
- 讀資料質量管理:資料可靠性與資料質量問題解決之道14普及資料質量
- Prometheus時序資料庫-資料的查詢Prometheus資料庫
- 實時資料庫與時序資料庫資料庫
- 初識時序資料庫資料庫
- 順序表有序插入資料
- 時序資料庫-01-時序資料庫有哪些?為什麼要使用資料庫
- 可觀測|時序資料降取樣在Prometheus實踐覆盤Prometheus
- 多角度分析,通訊時序資料的預測與異常檢測挑戰
- 資料治理之資料質量管理
- 資料治理:資料質量管理策略!
- GISAID平臺全球新冠基因組測序資料已破百萬大關AI
- QuestDB時序資料庫介紹資料庫
- usb流量分析
- 資料治理的資料質量知多少
- 時序資料庫連載系列:當SQL遇到時序TimescaleDB資料庫SQL
- MySQL8.0:倒序索引資料的資料排列方式MySql索引
- 讀資料質量管理:資料可靠性與資料質量問題解決之道15資料信任
- 百度大規模時序資料儲存(一)| 監控場景的時序資料
- [譯]使用遞迴神經網路(LSTMs)對時序資料進行預測遞迴神經網路
- 讀資料質量管理:資料可靠性與資料質量問題解決之道02資料湖倉
- 讀資料質量管理:資料可靠性與資料質量問題解決之道10資料平臺
- 讀資料質量管理:資料可靠性與資料質量問題解決之道18資料發現