// Filename: stl_alloc.h
// Comment By: 凝霜
// E-mail: mdl2009@vip.qq.com
// Blog: http://blog.csdn.net/mdl13412
// 特別說明: SGI STL的allocator在我的編譯環境下不使用記憶體池
// 而其記憶體池不進行記憶體釋放操作, 其釋放時機為程式退出或者stack unwinding
// 由作業系統保證記憶體的回收
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ALLOC_H
#define __SGI_STL_INTERNAL_ALLOC_H
#ifdef __SUNPRO_CC
# define __PRIVATE public
// SUN編譯器對private限制過多, 需要開放許可權
#else
# define __PRIVATE private
#endif
// 為了保證相容性, 對於不支援模板類靜態成員的情況, 使用malloc()進行記憶體分配
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# define __USE_MALLOC
#endif
// 實現了一些標準的node allocator
// 但是不同於C++標準或者STL原始STL標準
// 這些allocator沒有封裝不同指標型別
// 事實上我們假定只有一種指標理性
// allocation primitives意在分配不大於原始STL allocator分配的獨立的物件
#if 0
# include <new>
# define __THROW_BAD_ALLOC throw bad_alloc
#elif !defined(__THROW_BAD_ALLOC)
# include <iostream.h>
# define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
#endif
#ifndef __ALLOC
# define __ALLOC alloc
#endif
#ifdef __STL_WIN32THREADS
# include <windows.h>
#endif
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifndef __RESTRICT
# define __RESTRICT
#endif
// 多執行緒支援
// __STL_PTHREADS // GCC編譯器
// _NOTHREADS // 不支援多執行緒
// __STL_SGI_THREADS // SGI機器專用
// __STL_WIN32THREADS // MSVC編譯器
#if !defined(__STL_PTHREADS) && !defined(_NOTHREADS) \
&& !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
# define _NOTHREADS
#endif
# ifdef __STL_PTHREADS
// POSIX Threads
// This is dubious, since this is likely to be a high contention
// lock. Performance may not be adequate.
# include <pthread.h>
# define __NODE_ALLOCATOR_LOCK \
if (threads) pthread_mutex_lock(&__node_allocator_lock)
# define __NODE_ALLOCATOR_UNLOCK \
if (threads) pthread_mutex_unlock(&__node_allocator_lock)
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // Needed at -O3 on SGI
# endif
# ifdef __STL_WIN32THREADS
// The lock needs to be initialized by constructing an allocator
// objects of the right type. We do that here explicitly for alloc.
# define __NODE_ALLOCATOR_LOCK \
EnterCriticalSection(&__node_allocator_lock)
# define __NODE_ALLOCATOR_UNLOCK \
LeaveCriticalSection(&__node_allocator_lock)
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // may not be needed
# endif /* WIN32THREADS */
# ifdef __STL_SGI_THREADS
// This should work without threads, with sproc threads, or with
// pthreads. It is suboptimal in all cases.
// It is unlikely to even compile on nonSGI machines.
extern "C" {
extern int __us_rsthread_malloc;
}
// The above is copied from malloc.h. Including <malloc.h>
// would be cleaner but fails with certain levels of standard
// conformance.
# define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
{ __lock(&__node_allocator_lock); }
# define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
{ __unlock(&__node_allocator_lock); }
# define __NODE_ALLOCATOR_THREADS true
# define __VOLATILE volatile // Needed at -O3 on SGI
# endif
# ifdef _NOTHREADS
// Thread-unsafe
# define __NODE_ALLOCATOR_LOCK
# define __NODE_ALLOCATOR_UNLOCK
# define __NODE_ALLOCATOR_THREADS false
# define __VOLATILE
# endif
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// Malloc-based allocator. Typically slower than default alloc below.
// Typically thread-safe and more storage efficient.
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# ifdef __DECLARE_GLOBALS_HERE
void (* __malloc_alloc_oom_handler)() = 0;
// g++ 2.7.2 does not handle static template data members.
# else
extern void (* __malloc_alloc_oom_handler)();
# endif
#endif
// 一級配置器
template <int inst>
class __malloc_alloc_template
{
private:
// 用於在設定了__malloc_alloc_oom_handler情況下迴圈分配記憶體,
// 直到成功分配
static void *oom_malloc(size_t);
static void *oom_realloc(void *, size_t);
// 如果編譯器支援模板類靜態成員, 則使用錯誤處理函式, 類似C++的set_new_handler()
// 預設值為0, 如果不設定, 則記憶體分配失敗時直接__THROW_BAD_ALLOC
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
static void (* __malloc_alloc_oom_handler)();
#endif
public:
// 分配指定大小的記憶體(size_t n), 如果分配失敗, 則進入迴圈分配階段
// 迴圈分配前提是要保證正確設定了__malloc_alloc_oom_handler
static void * allocate(size_t n)
{
void *result = malloc(n);
if (0 == result) result = oom_malloc(n);
return result;
}
// 後面的size_t是為了相容operator delele
static void deallocate(void *p, size_t /* n */)
{ free(p); }
// 重新分配記憶體大小, 第二個引數是為了相容operator new
static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)
{
void * result = realloc(p, new_sz);
if (0 == result) result = oom_realloc(p, new_sz);
return result;
}
// 設定錯誤處理函式, 返回原來的函式指標
// 不屬於C++標準規定的介面
static void (* set_malloc_handler(void (*f)()))()
{
void (* old)() = __malloc_alloc_oom_handler;
__malloc_alloc_oom_handler = f;
return(old);
}
};
// malloc_alloc out-of-memory handling
#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
template <int inst>
void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;
#endif
// 如果設定了__malloc_alloc_oom_handler, 則首先執行錯誤處理函式, 然後迴圈分配直到成功
// 如果未設定__malloc_alloc_oom_handler, __THROW_BAD_ALLOC
template <int inst>
void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
{
void (* my_malloc_handler)();
void *result;
for (;;) {
my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
(*my_malloc_handler)();
result = malloc(n);
if (result) return(result);
}
}
template <int inst>
void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)
{
void (* my_malloc_handler)();
void *result;
for (;;) {
my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
(*my_malloc_handler)();
result = realloc(p, n);
if (result) return(result);
}
}
// 這個版本的STL並沒有使用non-type模板引數
typedef __malloc_alloc_template<0> malloc_alloc;
// 這個類中的介面其實就是STL標準中的allocator的介面
// 實際上所有的SGI STL都使用這個進行記憶體配置
// 例如: stl_vector.h中
// template <class T, class Alloc = alloc>
// class vector
// {
// ...
// protected:
// typedef simple_alloc<value_type, Alloc> data_allocator;
// ...
//};
template<class T, class Alloc>
class simple_alloc
{
public:
static T *allocate(size_t n)
{ return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
static T *allocate(void)
{ return (T*) Alloc::allocate(sizeof (T)); }
static void deallocate(T *p, size_t n)
{ if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
static void deallocate(T *p)
{ Alloc::deallocate(p, sizeof (T)); }
};
// Allocator adaptor to check size arguments for debugging.
// Reports errors using assert. Checking can be disabled with
// NDEBUG, but it's far better to just use the underlying allocator
// instead when no checking is desired.
// There is some evidence that this can confuse Purify.
template <class Alloc>
class debug_alloc
{
private:
enum {extra = 8}; // Size of space used to store size. Note
// that this must be large enough to preserve
// alignment.
public:
// extra 保證不會分配為0的記憶體空間, 而且要保證記憶體對齊
// 把分配記憶體的最前面設定成n的大小, 用於後面校驗
// 記憶體對齊的作用就是保護前面extra大小的資料不被修改
static void * allocate(size_t n)
{
char *result = (char *)Alloc::allocate(n + extra);
*(size_t *)result = n;
return result + extra;
}
// 如果*(size_t *)real_p != n則肯定發生向前越界
static void deallocate(void *p, size_t n)
{
char * real_p = (char *)p - extra;
assert(*(size_t *)real_p == n);
Alloc::deallocate(real_p, n + extra);
}
static void * reallocate(void *p, size_t old_sz, size_t new_sz)
{
char * real_p = (char *)p - extra;
assert(*(size_t *)real_p == old_sz);
char * result = (char *)
Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);
*(size_t *)result = new_sz;
return result + extra;
}
};
# ifdef __USE_MALLOC
typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;
# else
// 預設的node allocator
// 如果有合適的編譯器, 速度上與原始的STL class-specific allocators大致等價
// 但是具有產生更少記憶體碎片的優點
// Default_alloc_template引數是用於實驗性質的, 在未來可能會消失
// 客戶只能在當下使用alloc
//
// 重要的實現屬性:
// 1. 如果客戶請求一個size > __MAX_BYTE的物件, 則直接使用malloc()分配
// 2. 對於其它情況下, 我們將請求物件的大小按照記憶體對齊向上舍入ROUND_UP(requested_size)
// TODO: 待翻譯
// 2. In all other cases, we allocate an object of size exactly
// ROUND_UP(requested_size). Thus the client has enough size
// information that we can return the object to the proper free list
// without permanently losing part of the object.
//
// 第一個模板引數指定是否有多於一個執行緒使用本allocator
// 在一個default_alloc例項中分配物件, 在另一個deallocate例項中釋放物件, 是安全的
// 這有效的轉換其所有權到另一個物件
// 這可能導致對我們引用的區域產生不良影響
// 第二個模板引數僅僅用於建立多個default_alloc例項
// 不同容器使用不同allocator例項建立的node擁有不同型別, 這限制了此方法的通用性
// Sun C++ compiler需要在類外定義這些列舉
#ifdef __SUNPRO_CC
// breaks if we make these template class members:
enum {__ALIGN = 8};
enum {__MAX_BYTES = 128};
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
#endif
template <bool threads, int inst>
class __default_alloc_template
{
private:
// Really we should use static const int x = N
// instead of enum { x = N }, but few compilers accept the former.
# ifndef __SUNPRO_CC
enum {__ALIGN = 8};
enum {__MAX_BYTES = 128};
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
# endif
// 向上舍入操作
// 解釋一下, __ALIGN - 1指明的是實際記憶體對齊的粒度
// 例如__ALIGN = 8時, 我們只需要7就可以實際表示8個數(0~7)
// 那麼~(__ALIGN - 1)就是進行舍入的粒度
// 我們將(bytes) + __ALIGN-1)就是先進行進位, 然後截斷
// 這就保證了我是向上舍入的
// 例如byte = 100, __ALIGN = 8的情況
// ~(__ALIGN - 1) = (1 000)B
// ((bytes) + __ALIGN-1) = (1 101 011)B
// (((bytes) + __ALIGN-1) & ~(__ALIGN - 1)) = (1 101 000 )B = (104)D
// 104 / 8 = 13, 這就實現了向上舍入
// 對於byte剛好滿足記憶體對齊的情況下, 結果保持byte大小不變
// 記得《Hacker's Delight》上面有相關的計算
// 這個表示式與下面給出的等價
// ((((bytes) + _ALIGN - 1) * _ALIGN) / _ALIGN)
// 但是SGI STL使用的方法效率非常高
static size_t ROUND_UP(size_t bytes)
{
return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));
}
__PRIVATE:
// 管理記憶體連結串列用
// 為了盡最大可能減少記憶體的使用, 這裡使用一個union
// 如果使用第一個成員, 則指向另一個相同的union obj
// 而如果使用第二個成員, 則指向實際的記憶體區域
// 這樣就實現了連結串列結點只使用一個指標的大小空間, 卻能同時做索引和指向記憶體區域
// 這個技巧性非常強, 值得學習
union obj
{
union obj * free_list_link;
char client_data[1]; /* The client sees this. */
};
private:
# ifdef __SUNPRO_CC
static obj * __VOLATILE free_list[];
// Specifying a size results in duplicate def for 4.1
# else
// 這裡分配的free_list為16
// 對應的記憶體鏈容量分別為8, 16, 32 ... 128
static obj * __VOLATILE free_list[__NFREELISTS];
# endif
// 根據待待分配的空間大小, 在free_list中選擇合適的大小
static size_t FREELIST_INDEX(size_t bytes)
{
return (((bytes) + __ALIGN-1)/__ALIGN - 1);
}
// Returns an object of size n, and optionally adds to size n free list.
static void *refill(size_t n);
// Allocates a chunk for nobjs of size "size". nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char *chunk_alloc(size_t size, int &nobjs);
// 記憶體池
static char *start_free; // 記憶體池起始點
static char *end_free; // 記憶體池結束點
static size_t heap_size; // 已經在堆上分配的空間大小
// 下面三個條件編譯給多執行緒條件下使用的鎖提供必要支援
# ifdef __STL_SGI_THREADS
static volatile unsigned long __node_allocator_lock;
static void __lock(volatile unsigned long *);
static inline void __unlock(volatile unsigned long *);
# endif
# ifdef __STL_PTHREADS
static pthread_mutex_t __node_allocator_lock;
# endif
# ifdef __STL_WIN32THREADS
static CRITICAL_SECTION __node_allocator_lock;
static bool __node_allocator_lock_initialized;
public:
__default_alloc_template() {
// This assumes the first constructor is called before threads
// are started.
if (!__node_allocator_lock_initialized) {
InitializeCriticalSection(&__node_allocator_lock);
__node_allocator_lock_initialized = true;
}
}
private:
# endif
// 用於多執行緒環境下鎖定操作用
class lock
{
public:
lock() { __NODE_ALLOCATOR_LOCK; }
~lock() { __NODE_ALLOCATOR_UNLOCK; }
};
friend class lock;
public:
/* n must be > 0 */
static void * allocate(size_t n)
{
obj * __VOLATILE * my_free_list;
obj * __RESTRICT result;
// 如果待分配物件大於__MAX_BYTES, 使用一級配置器分配
if (n > (size_t) __MAX_BYTES) {
return(malloc_alloc::allocate(n));
}
my_free_list = free_list + FREELIST_INDEX(n);
// Acquire the lock here with a constructor call.
// This ensures that it is released in exit or during stack
// unwinding.
# ifndef _NOTHREADS
/*REFERENCED*/
lock lock_instance;
# endif
result = *my_free_list;
// 如果是第一次使用這個容量的連結串列, 則分配此連結串列需要的記憶體
// 如果不是, 則判斷記憶體吃容量, 不夠則分配
if (result == 0) {
void *r = refill(ROUND_UP(n));
return r;
}
*my_free_list = result -> free_list_link;
return (result);
};
/* p may not be 0 */
static void deallocate(void *p, size_t n)
{
obj *q = (obj *)p;
obj * __VOLATILE * my_free_list;
// 對於大於__MAX_BYTES的物件, 因為採用的是一級配置器分配, 所以同樣使用一級配置器釋放
if (n > (size_t) __MAX_BYTES) {
malloc_alloc::deallocate(p, n);
return;
}
my_free_list = free_list + FREELIST_INDEX(n);
// acquire lock
# ifndef _NOTHREADS
/*REFERENCED*/
lock lock_instance;
# endif /* _NOTHREADS */
q -> free_list_link = *my_free_list;
*my_free_list = q;
// lock is released here
}
static void * reallocate(void *p, size_t old_sz, size_t new_sz);
} ;
typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
typedef __default_alloc_template<false, 0> single_client_alloc;
// 每次分配一大塊記憶體, 防止多次分配小記憶體塊帶來的記憶體碎片
// 進行分配操作時, 根據具體環境決定是否加鎖
// 我們假定要分配的記憶體滿足記憶體對齊要求
template <bool threads, int inst>
char*
__default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)
{
char * result;
size_t total_bytes = size * nobjs;
size_t bytes_left = end_free - start_free; // 計算記憶體池剩餘容量
// 如果記憶體池中剩餘記憶體>=需要分配的內記憶體, 返回start_free指向的記憶體塊,
// 並且重新設定記憶體池起始點
if (bytes_left >= total_bytes) {
result = start_free;
start_free += total_bytes;
return(result);
}
// 如果記憶體吃中剩餘的容量不夠分配, 但是能至少分配一個節點時,
// 返回所能分配的最多的節點, 返回start_free指向的記憶體塊
// 並且重新設定記憶體池起始點
else if (bytes_left >= size) {
nobjs = bytes_left/size;
total_bytes = size * nobjs;
result = start_free;
start_free += total_bytes;
return(result);
}
// 記憶體池剩餘記憶體連一個節點也不夠分配
else {
size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
// 將剩餘的記憶體分配給指定的free_list[FREELIST_INDEX(bytes_left)]
if (bytes_left > 0) {
obj * __VOLATILE * my_free_list =
free_list + FREELIST_INDEX(bytes_left);
((obj *)start_free) -> free_list_link = *my_free_list;
*my_free_list = (obj *)start_free;
}
start_free = (char *)malloc(bytes_to_get);
// 分配失敗, 搜尋原來已經分配的記憶體塊, 看是否有大於等於當前請求的記憶體塊
if (0 == start_free) {
int i;
obj * __VOLATILE * my_free_list, *p;
// Try to make do with what we have. That can't
// hurt. We do not try smaller requests, since that tends
// to result in disaster on multi-process machines.
for (i = size; i <= __MAX_BYTES; i += __ALIGN) {
my_free_list = free_list + FREELIST_INDEX(i);
p = *my_free_list;
// 找到了一個, 將其加入記憶體池中
if (0 != p) {
*my_free_list = p -> free_list_link;
start_free = (char *)p;
end_free = start_free + i;
// 記憶體池更新完畢, 重新分配需要的記憶體
return(chunk_alloc(size, nobjs));
// Any leftover piece will eventually make it to the
// right free list.
}
}
// 再次失敗, 直接呼叫一級配置器分配, 期待異常處理函式能提供幫助
// 不過在我看來, 記憶體分配失敗進行其它嘗試已經沒什麼意義了,
// 最好直接log, 然後讓程式崩潰
end_free = 0; // In case of exception.
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
}
heap_size += bytes_to_get;
end_free = start_free + bytes_to_get;
// 記憶體池更新完畢, 重新分配需要的記憶體
return(chunk_alloc(size, nobjs));
}
}
// 返回一個大小為n的物件, 並且加入到free_list[FREELIST_INDEX(n)]
// 進行分配操作時, 根據具體環境決定是否加鎖
// 我們假定要分配的記憶體滿足記憶體對齊要求
template <bool threads, int inst>
void* __default_alloc_template<threads, inst>::refill(size_t n)
{
int nobjs = 20;
char * chunk = chunk_alloc(n, nobjs);
obj * __VOLATILE * my_free_list;
obj * result;
obj * current_obj, * next_obj;
int i;
// 如果記憶體池僅僅只夠分配一個物件的空間, 直接返回即可
if (1 == nobjs) return(chunk);
// 記憶體池能分配更多的空間
my_free_list = free_list + FREELIST_INDEX(n);
// 在chunk的空間中建立free_list
result = (obj *)chunk;
*my_free_list = next_obj = (obj *)(chunk + n);
for (i = 1; ; i++) {
current_obj = next_obj;
next_obj = (obj *)((char *)next_obj + n);
if (nobjs - 1 == i) {
current_obj -> free_list_link = 0;
break;
} else {
current_obj -> free_list_link = next_obj;
}
}
return(result);
}
template <bool threads, int inst>
void*
__default_alloc_template<threads, inst>::reallocate(void *p,
size_t old_sz,
size_t new_sz)
{
void * result;
size_t copy_sz;
// 如果old_size和new_size均大於__MAX_BYTES, 則直接呼叫realloc()
// 因為這部分記憶體不是經過記憶體池分配的
if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) {
return(realloc(p, new_sz));
}
// 如果ROUND_UP(old_sz) == ROUND_UP(new_sz), 記憶體大小沒變化, 不進行重新分配
if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
// 進行重新分配並拷貝資料
result = allocate(new_sz);
copy_sz = new_sz > old_sz? old_sz : new_sz;
memcpy(result, p, copy_sz);
deallocate(p, old_sz);
return(result);
}
#ifdef __STL_PTHREADS
template <bool threads, int inst>
pthread_mutex_t
__default_alloc_template<threads, inst>::__node_allocator_lock
= PTHREAD_MUTEX_INITIALIZER;
#endif
#ifdef __STL_WIN32THREADS
template <bool threads, int inst> CRITICAL_SECTION
__default_alloc_template<threads, inst>::__node_allocator_lock;
template <bool threads, int inst> bool
__default_alloc_template<threads, inst>::__node_allocator_lock_initialized
= false;
#endif
#ifdef __STL_SGI_THREADS
__STL_END_NAMESPACE
#include <mutex.h>
#include <time.h>
__STL_BEGIN_NAMESPACE
// Somewhat generic lock implementations. We need only test-and-set
// and some way to sleep. These should work with both SGI pthreads
// and sproc threads. They may be useful on other systems.
template <bool threads, int inst>
volatile unsigned long
__default_alloc_template<threads, inst>::__node_allocator_lock = 0;
#if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
# define __test_and_set(l,v) test_and_set(l,v)
#endif
template <bool threads, int inst>
void
__default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)
{
const unsigned low_spin_max = 30; // spin cycles if we suspect uniprocessor
const unsigned high_spin_max = 1000; // spin cycles for multiprocessor
static unsigned spin_max = low_spin_max;
unsigned my_spin_max;
static unsigned last_spins = 0;
unsigned my_last_spins;
static struct timespec ts = {0, 1000};
unsigned junk;
# define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
int i;
if (!__test_and_set((unsigned long *)lock, 1)) {
return;
}
my_spin_max = spin_max;
my_last_spins = last_spins;
for (i = 0; i < my_spin_max; i++) {
if (i < my_last_spins/2 || *lock) {
__ALLOC_PAUSE;
continue;
}
if (!__test_and_set((unsigned long *)lock, 1)) {
// got it!
// Spinning worked. Thus we're probably not being scheduled
// against the other process with which we were contending.
// Thus it makes sense to spin longer the next time.
last_spins = i;
spin_max = high_spin_max;
return;
}
}
// We are probably being scheduled against the other process. Sleep.
spin_max = low_spin_max;
for (;;) {
if (!__test_and_set((unsigned long *)lock, 1)) {
return;
}
nanosleep(&ts, 0);
}
}
template <bool threads, int inst>
inline void
__default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)
{
# if defined(__GNUC__) && __mips >= 3
asm("sync");
*lock = 0;
# elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
__lock_release(lock);
# else
*lock = 0;
// This is not sufficient on many multiprocessors, since
// writes to protected variables and the lock may be reordered.
# endif
}
#endif
// 記憶體池起始位置
template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::start_free = 0;
// 記憶體池結束位置
template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::end_free = 0;
template <bool threads, int inst>
size_t __default_alloc_template<threads, inst>::heap_size = 0;
// 記憶體池容量索引陣列
template <bool threads, int inst>
__default_alloc_template<threads, inst>::obj * __VOLATILE
__default_alloc_template<threads, inst> ::free_list[
# ifdef __SUNPRO_CC
__NFREELISTS
# else
__default_alloc_template<threads, inst>::__NFREELISTS
# endif
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// The 16 zeros are necessary to make version 4.1 of the SunPro
// compiler happy. Otherwise it appears to allocate too little
// space for the array.
# ifdef __STL_WIN32THREADS
// Create one to get critical section initialized.
// We do this onece per file, but only the first constructor
// does anything.
static alloc __node_allocator_dummy_instance;
# endif
#endif /* ! __USE_MALLOC */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
#undef __PRIVATE
#endif /* __SGI_STL_INTERNAL_ALLOC_H */
// Local Variables:
// mode:C++
// End: