// Filename: stl_slist.h
// Comment By: 凝霜
// E-mail: mdl2009@vip.qq.com
// Blog: http://blog.csdn.net/mdl13412
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_SLIST_H
#define __SGI_STL_INTERNAL_SLIST_H
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// 這個是連結串列結點的指標域
struct __slist_node_base
{
__slist_node_base* next;
};
////////////////////////////////////////////////////////////////////////////////
// 將new_node插入到prev_node後面
////////////////////////////////////////////////////////////////////////////////
// 插入前
// 這個是prev_node 這個是new_node
// ↓ ↓
// -------- -------- -------- --------
// ... | next |--->| next |-------->| next | ... | next |
// -------- -------- -------- --------
// 插入後
// 這個是prev_node 這個是new_node
// ↓ --------------------------------- ↓
// -------- -------- | -------- | --------
// ... | next |--->| next |--- -->| next | ... --->| next |---
// -------- -------- | -------- -------- |
// -------------------------------------------
////////////////////////////////////////////////////////////////////////////////
inline __slist_node_base* __slist_make_link(__slist_node_base* prev_node,
__slist_node_base* new_node)
{
new_node->next = prev_node->next;
prev_node->next = new_node;
return new_node;
}
// 獲取指定結點的前一個結點
inline __slist_node_base* __slist_previous(__slist_node_base* head,
const __slist_node_base* node)
{
while (head && head->next != node)
head = head->next;
return head;
}
inline const __slist_node_base* __slist_previous(const __slist_node_base* head,
const __slist_node_base* node)
{
while (head && head->next != node)
head = head->next;
return head;
}
////////////////////////////////////////////////////////////////////////////////
// 將(first, last]連結到pos後面
////////////////////////////////////////////////////////////////////////////////
// 下面的例子是在同一連結串列進行操作的情況
// 操作前
// pos after before_first first before_last
// ↓ ↓ ↓ ↓ ↓
// -------- -------- -------- -------- -------- -------- --------
// ... | next |--->| next |--->| next |--->| next |--->| next |--->| next |--->| next | ...
// -------- -------- -------- -------- -------- -------- --------
// 操作後
// pos after before_first first before_last
// ↓ ↓ ↓ ↓ ↓
// -------- -------- -------- -------- -------- -------- --------
// ... | next | ->| next |--->| next |-- | next |--->| next |--->| next | ->| next | ...
// -------- | -------- -------- | -------- -------- -------- | --------
// | | | ↑ | |
// ------|----------------------|------- | |
// -----------------------|------------------------------- |
// --------------------------------------
////////////////////////////////////////////////////////////////////////////////
inline void __slist_splice_after(__slist_node_base* pos,
__slist_node_base* before_first,
__slist_node_base* before_last)
{
if (pos != before_first && pos != before_last) {
__slist_node_base* first = before_first->next;
__slist_node_base* after = pos->next;
before_first->next = before_last->next;
pos->next = first;
before_last->next = after;
}
}
// 連結串列轉置
inline __slist_node_base* __slist_reverse(__slist_node_base* node)
{
__slist_node_base* result = node;
node = node->next;
result->next = 0;
while(node) {
__slist_node_base* next = node->next;
node->next = result;
result = node;
node = next;
}
return result;
}
// 這個是真正的連結串列結點
template <class T>
struct __slist_node : public __slist_node_base
{
T data;
};
struct __slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category;
__slist_node_base* node;
__slist_iterator_base(__slist_node_base* x) : node(x) {}
void incr() { node = node->next; }
bool operator==(const __slist_iterator_base& x) const
{
return node == x.node;
}
bool operator!=(const __slist_iterator_base& x) const
{
return node != x.node;
}
};
// 連結串列迭代器, 關於迭代器參考<stl_iterator.h>
// 由於是單向連結串列, 所以不能提供operator --(效率太低)
// 同樣也不能提供隨機訪問能力
template <class T, class Ref, class Ptr>
struct __slist_iterator : public __slist_iterator_base
{
typedef __slist_iterator<T, T&, T*> iterator;
typedef __slist_iterator<T, const T&, const T*> const_iterator;
typedef __slist_iterator<T, Ref, Ptr> self;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef __slist_node<T> list_node;
__slist_iterator(list_node* x) : __slist_iterator_base(x) {}
__slist_iterator() : __slist_iterator_base(0) {}
__slist_iterator(const iterator& x) : __slist_iterator_base(x.node) {}
reference operator*() const { return ((list_node*) node)->data; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
// 如果編譯器支援'->'則過載, 詳細見我在<stl_list.h>中的剖析
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++()
{
incr();
return *this;
}
self operator++(int)
{
self tmp = *this;
incr();
return tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline ptrdiff_t*
distance_type(const __slist_iterator_base&)
{
return 0;
}
inline forward_iterator_tag
iterator_category(const __slist_iterator_base&)
{
return forward_iterator_tag();
}
template <class T, class Ref, class Ptr>
inline T*
value_type(const __slist_iterator<T, Ref, Ptr>&) {
return 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// 計算連結串列長度, 時間複雜度O(n)
inline size_t __slist_size(__slist_node_base* node)
{
size_t result = 0;
for ( ; node != 0; node = node->next)
++result;
return result;
}
template <class T, class Alloc = alloc>
class slist
{
public:
// 標記為'STL標準強制要求'的typedefs用於提供iterator_traits<I>支援
typedef T value_type; // STL標準強制要求
typedef value_type* pointer; // STL標準強制要求
typedef const value_type* const_pointer;
typedef value_type& reference; // STL標準強制要求
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type; // STL標準強制要求
typedef __slist_iterator<T, T&, T*> iterator; // STL標準強制要求
typedef __slist_iterator<T, const T&, const T*> const_iterator;
private:
typedef __slist_node<T> list_node;
typedef __slist_node_base list_node_base;
typedef __slist_iterator_base iterator_base;
// 這個提供STL標準的allocator介面
typedef simple_alloc<list_node, Alloc> list_node_allocator;
// 建立一個值為x的結點, 其沒有後繼結點
static list_node* create_node(const value_type& x)
{
list_node* node = list_node_allocator::allocate();
__STL_TRY {
construct(&node->data, x);
node->next = 0;
}
__STL_UNWIND(list_node_allocator::deallocate(node));
return node;
}
// 析構一個結點的資料, 不釋放記憶體
static void destroy_node(list_node* node)
{
destroy(&node->data);
list_node_allocator::deallocate(node);
}
////////////////////////////////////////////////////////////////////////////////
// 在頭結點插入n個值為x的結點
////////////////////////////////////////////////////////////////////////////////
// fill_initialize(size_type n, const value_type& x)
// ↓
// _insert_after_fill(&head, n, x);
// ↓
// for (size_type i = 0; i < n; ++i)
// pos = __slist_make_link(pos, create_node(x));
// |
// |
// ↓
// create_node(const value_type& x)
// list_node_allocator::allocate();
// construct(&node->data, x);
////////////////////////////////////////////////////////////////////////////////
void fill_initialize(size_type n, const value_type& x)
{
head.next = 0;
__STL_TRY {
_insert_after_fill(&head, n, x);
}
__STL_UNWIND(clear());
}
// 在頭結點後面插入[first, last)區間內的結點, 注意是新建立結點
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void range_initialize(InputIterator first, InputIterator last)
{
head.next = 0;
__STL_TRY {
_insert_after_range(&head, first, last);
}
__STL_UNWIND(clear());
}
#else /* __STL_MEMBER_TEMPLATES */
void range_initialize(const value_type* first, const value_type* last) {
head.next = 0;
__STL_TRY {
_insert_after_range(&head, first, last);
}
__STL_UNWIND(clear());
}
void range_initialize(const_iterator first, const_iterator last) {
head.next = 0;
__STL_TRY {
_insert_after_range(&head, first, last);
}
__STL_UNWIND(clear());
}
#endif /* __STL_MEMBER_TEMPLATES */
private:
list_node_base head; // 這是連結串列頭
public:
slist() { head.next = 0; }
slist(size_type n, const value_type& x) { fill_initialize(n, x); }
slist(int n, const value_type& x) { fill_initialize(n, x); }
slist(long n, const value_type& x) { fill_initialize(n, x); }
explicit slist(size_type n) { fill_initialize(n, value_type()); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
slist(InputIterator first, InputIterator last)
{
range_initialize(first, last);
}
#else /* __STL_MEMBER_TEMPLATES */
slist(const_iterator first, const_iterator last) {
range_initialize(first, last);
}
slist(const value_type* first, const value_type* last) {
range_initialize(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
slist(const slist& L) { range_initialize(L.begin(), L.end()); }
slist& operator= (const slist& L);
// 析構所有元素, 並釋放記憶體
~slist() { clear(); }
public:
iterator begin() { return iterator((list_node*)head.next); }
const_iterator begin() const { return const_iterator((list_node*)head.next);}
iterator end() { return iterator(0); }
const_iterator end() const { return const_iterator(0); }
size_type size() const { return __slist_size(head.next); }
size_type max_size() const { return size_type(-1); }
bool empty() const { return head.next == 0; }
// 只需交換連結串列頭資料就能實現交換^_^
void swap(slist& L)
{
list_node_base* tmp = head.next;
head.next = L.head.next;
L.head.next = tmp;
}
public:
friend bool operator== __STL_NULL_TMPL_ARGS(const slist<T, Alloc>& L1,
const slist<T, Alloc>& L2);
public:
// OK. 下面四個函式時間複雜度為O(1)
// 對於插入操作只推薦push_front()其餘操作個人感覺很慢
reference front() { return ((list_node*) head.next)->data; }
const_reference front() const { return ((list_node*) head.next)->data; }
void push_front(const value_type& x)
{
__slist_make_link(&head, create_node(x));
}
void pop_front()
{
list_node* node = (list_node*) head.next;
head.next = node->next;
destroy_node(node);
}
// 獲取指定結點的前驅結點
iterator previous(const_iterator pos)
{
return iterator((list_node*) __slist_previous(&head, pos.node));
}
const_iterator previous(const_iterator pos) const
{
return const_iterator((list_node*) __slist_previous(&head, pos.node));
}
private:
// 在指定結點後插入值為x的元素, 分配記憶體
list_node* _insert_after(list_node_base* pos, const value_type& x)
{
return (list_node*) (__slist_make_link(pos, create_node(x)));
}
// 在指定結點後面插入n個值為x的元素
void _insert_after_fill(list_node_base* pos,
size_type n, const value_type& x)
{
for (size_type i = 0; i < n; ++i)
pos = __slist_make_link(pos, create_node(x));
}
// TODO: 待分析
// 在pos後面插入[first, last)區間內的元素
#ifdef __STL_MEMBER_TEMPLATES
template <class InIter>
void _insert_after_range(list_node_base* pos, InIter first, InIter last)
{
while (first != last) {
pos = __slist_make_link(pos, create_node(*first));
++first;
}
}
#else /* __STL_MEMBER_TEMPLATES */
void _insert_after_range(list_node_base* pos,
const_iterator first, const_iterator last) {
while (first != last) {
pos = __slist_make_link(pos, create_node(*first));
++first;
}
}
void _insert_after_range(list_node_base* pos,
const value_type* first, const value_type* last) {
while (first != last) {
pos = __slist_make_link(pos, create_node(*first));
++first;
}
}
#endif /* __STL_MEMBER_TEMPLATES */
// 擦除pos後面的結點
list_node_base* erase_after(list_node_base* pos)
{
list_node* next = (list_node*) (pos->next);
list_node_base* next_next = next->next;
pos->next = next_next;
destroy_node(next);
return next_next;
}
// 擦除(before_first, last_node)區間的結點
list_node_base* erase_after(list_node_base* before_first,
list_node_base* last_node)
{
list_node* cur = (list_node*) (before_first->next);
while (cur != last_node) {
list_node* tmp = cur;
cur = (list_node*) cur->next;
destroy_node(tmp);
}
before_first->next = last_node;
return last_node;
}
public:
// 在pos後面插入值為x的結點
iterator insert_after(iterator pos, const value_type& x)
{
return iterator(_insert_after(pos.node, x));
}
iterator insert_after(iterator pos)
{
return insert_after(pos, value_type());
}
void insert_after(iterator pos, size_type n, const value_type& x)
{
_insert_after_fill(pos.node, n, x);
}
void insert_after(iterator pos, int n, const value_type& x)
{
_insert_after_fill(pos.node, (size_type) n, x);
}
void insert_after(iterator pos, long n, const value_type& x)
{
_insert_after_fill(pos.node, (size_type) n, x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InIter>
void insert_after(iterator pos, InIter first, InIter last) {
_insert_after_range(pos.node, first, last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert_after(iterator pos, const_iterator first, const_iterator last) {
_insert_after_range(pos.node, first, last);
}
void insert_after(iterator pos,
const value_type* first, const value_type* last) {
_insert_after_range(pos.node, first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
// 在pos後面插入值為x的結點
iterator insert(iterator pos, const value_type& x)
{
return iterator(_insert_after(__slist_previous(&head, pos.node), x));
}
iterator insert(iterator pos)
{
return iterator(_insert_after(__slist_previous(&head, pos.node),
value_type()));
}
// 在pos前插入m個值為x的結點
void insert(iterator pos, size_type n, const value_type& x)
{
_insert_after_fill(__slist_previous(&head, pos.node), n, x);
}
void insert(iterator pos, int n, const value_type& x)
{
_insert_after_fill(__slist_previous(&head, pos.node), (size_type) n, x);
}
void insert(iterator pos, long n, const value_type& x)
{
_insert_after_fill(__slist_previous(&head, pos.node), (size_type) n, x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InIter>
void insert(iterator pos, InIter first, InIter last) {
_insert_after_range(__slist_previous(&head, pos.node), first, last);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator pos, const_iterator first, const_iterator last) {
_insert_after_range(__slist_previous(&head, pos.node), first, last);
}
void insert(iterator pos, const value_type* first, const value_type* last) {
_insert_after_range(__slist_previous(&head, pos.node), first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator erase_after(iterator pos)
{
return iterator((list_node*)erase_after(pos.node));
}
iterator erase_after(iterator before_first, iterator last)
{
return iterator((list_node*)erase_after(before_first.node, last.node));
}
iterator erase(iterator pos)
{
return (list_node*) erase_after(__slist_previous(&head, pos.node));
}
iterator erase(iterator first, iterator last)
{
return (list_node*) erase_after(__slist_previous(&head, first.node),
last.node);
}
// 詳細剖析見後面實現部分
void resize(size_type new_size, const T& x);
void resize(size_type new_size) { resize(new_size, T()); }
void clear() { erase_after(&head, 0); }
public:
// splic操作可以參考<stl_list.h>的說明
// Moves the range [before_first + 1, before_last + 1) to *this,
// inserting it immediately after pos. This is constant time.
void splice_after(iterator pos,
iterator before_first, iterator before_last)
{
if (before_first != before_last)
__slist_splice_after(pos.node, before_first.node, before_last.node);
}
// Moves the element that follows prev to *this, inserting it immediately
// after pos. This is constant time.
void splice_after(iterator pos, iterator prev)
{
__slist_splice_after(pos.node, prev.node, prev.node->next);
}
// Linear in distance(begin(), pos), and linear in L.size().
void splice(iterator pos, slist& L)
{
if (L.head.next)
__slist_splice_after(__slist_previous(&head, pos.node),
&L.head,
__slist_previous(&L.head, 0));
}
// Linear in distance(begin(), pos), and in distance(L.begin(), i).
void splice(iterator pos, slist& L, iterator i)
{
__slist_splice_after(__slist_previous(&head, pos.node),
__slist_previous(&L.head, i.node),
i.node);
}
// Linear in distance(begin(), pos), in distance(L.begin(), first),
// and in distance(first, last).
void splice(iterator pos, slist& L, iterator first, iterator last)
{
if (first != last)
__slist_splice_after(__slist_previous(&head, pos.node),
__slist_previous(&L.head, first.node),
__slist_previous(first.node, last.node));
}
public:
// 這些介面可以參考<stl_list.h>
void reverse() { if (head.next) head.next = __slist_reverse(head.next); }
void remove(const T& val);
void unique();
void merge(slist& L);
void sort();
#ifdef __STL_MEMBER_TEMPLATES
template <class Predicate> void remove_if(Predicate pred);
template <class BinaryPredicate> void unique(BinaryPredicate pred);
template <class StrictWeakOrdering> void merge(slist&, StrictWeakOrdering);
template <class StrictWeakOrdering> void sort(StrictWeakOrdering comp);
#endif /* __STL_MEMBER_TEMPLATES */
};
// 實現整個連結串列的賦值, 會析構原有的元素
template <class T, class Alloc>
slist<T, Alloc>& slist<T,Alloc>::operator=(const slist<T, Alloc>& L)
{
if (&L != this) {
list_node_base* p1 = &head;
list_node* n1 = (list_node*) head.next;
const list_node* n2 = (const list_node*) L.head.next;
while (n1 && n2) {
n1->data = n2->data;
p1 = n1;
n1 = (list_node*) n1->next;
n2 = (const list_node*) n2->next;
}
if (n2 == 0)
erase_after(p1, 0);
else
_insert_after_range(p1,
const_iterator((list_node*)n2), const_iterator(0));
}
return *this;
}
// 只有兩個連結串列所有內容都相等才判定其等價
// 不過個人覺得只需要判斷頭結點指向的第一個結點就可以
// 大家可以討論一下
template <class T, class Alloc>
bool operator==(const slist<T, Alloc>& L1, const slist<T, Alloc>& L2)
{
typedef typename slist<T,Alloc>::list_node list_node;
list_node* n1 = (list_node*) L1.head.next;
list_node* n2 = (list_node*) L2.head.next;
while (n1 && n2 && n1->data == n2->data) {
n1 = (list_node*) n1->next;
n2 = (list_node*) n2->next;
}
return n1 == 0 && n2 == 0;
}
// 字典序比較
template <class T, class Alloc>
inline bool operator<(const slist<T, Alloc>& L1, const slist<T, Alloc>& L2)
{
return lexicographical_compare(L1.begin(), L1.end(), L2.begin(), L2.end());
}
// 如果編譯器支援模板函式特化優先順序
// 那麼將全域性的swap實現為使用slist私有的swap以提高效率
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class T, class Alloc>
inline void swap(slist<T, Alloc>& x, slist<T, Alloc>& y) {
x.swap(y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
////////////////////////////////////////////////////////////////////////////////
// 下面這些介面和list的行為一致, 只是演算法有些不同, 請參考<stl_list.h>
////////////////////////////////////////////////////////////////////////////////
template <class T, class Alloc>
void slist<T, Alloc>::resize(size_type len, const T& x)
{
list_node_base* cur = &head;
while (cur->next != 0 && len > 0) {
--len;
cur = cur->next;
}
if (cur->next)
erase_after(cur, 0);
else
_insert_after_fill(cur, len, x);
}
template <class T, class Alloc>
void slist<T,Alloc>::remove(const T& val)
{
list_node_base* cur = &head;
while (cur && cur->next) {
if (((list_node*) cur->next)->data == val)
erase_after(cur);
else
cur = cur->next;
}
}
template <class T, class Alloc>
void slist<T,Alloc>::unique()
{
list_node_base* cur = head.next;
if (cur) {
while (cur->next) {
if (((list_node*)cur)->data == ((list_node*)(cur->next))->data)
erase_after(cur);
else
cur = cur->next;
}
}
}
template <class T, class Alloc>
void slist<T,Alloc>::merge(slist<T,Alloc>& L)
{
list_node_base* n1 = &head;
while (n1->next && L.head.next) {
if (((list_node*) L.head.next)->data < ((list_node*) n1->next)->data)
__slist_splice_after(n1, &L.head, L.head.next);
n1 = n1->next;
}
if (L.head.next) {
n1->next = L.head.next;
L.head.next = 0;
}
}
template <class T, class Alloc>
void slist<T,Alloc>::sort()
{
if (head.next && head.next->next) {
slist carry;
slist counter[64];
int fill = 0;
while (!empty()) {
__slist_splice_after(&carry.head, &head, head.next);
int i = 0;
while (i < fill && !counter[i].empty()) {
counter[i].merge(carry);
carry.swap(counter[i]);
++i;
}
carry.swap(counter[i]);
if (i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1]);
this->swap(counter[fill-1]);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class T, class Alloc>
template <class Predicate> void slist<T,Alloc>::remove_if(Predicate pred)
{
list_node_base* cur = &head;
while (cur->next) {
if (pred(((list_node*) cur->next)->data))
erase_after(cur);
else
cur = cur->next;
}
}
template <class T, class Alloc> template <class BinaryPredicate>
void slist<T,Alloc>::unique(BinaryPredicate pred)
{
list_node* cur = (list_node*) head.next;
if (cur) {
while (cur->next) {
if (pred(((list_node*)cur)->data, ((list_node*)(cur->next))->data))
erase_after(cur);
else
cur = (list_node*) cur->next;
}
}
}
template <class T, class Alloc> template <class StrictWeakOrdering>
void slist<T,Alloc>::merge(slist<T,Alloc>& L, StrictWeakOrdering comp)
{
list_node_base* n1 = &head;
while (n1->next && L.head.next) {
if (comp(((list_node*) L.head.next)->data,
((list_node*) n1->next)->data))
__slist_splice_after(n1, &L.head, L.head.next);
n1 = n1->next;
}
if (L.head.next) {
n1->next = L.head.next;
L.head.next = 0;
}
}
template <class T, class Alloc> template <class StrictWeakOrdering>
void slist<T,Alloc>::sort(StrictWeakOrdering comp)
{
if (head.next && head.next->next) {
slist carry;
slist counter[64];
int fill = 0;
while (!empty()) {
__slist_splice_after(&carry.head, &head, head.next);
int i = 0;
while (i < fill && !counter[i].empty()) {
counter[i].merge(carry, comp);
carry.swap(counter[i]);
++i;
}
carry.swap(counter[i]);
if (i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1], comp);
this->swap(counter[fill-1]);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_SLIST_H */
// Local Variables:
// mode:C++
// End: