《STL原始碼剖析》-- stl_tree.h
個人覺得這個檔案我自己剖析的沒有侯捷老師詳細, 故給出的是侯捷老師的版本
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_tree.h 完整列表
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H
/*
本檔實作Red-black tree(紅-黑樹)class,用以實作 STL 關聯式容器(如set,
multiset, map, multimap)。所用之insertion 和deletion 演演算法係以
Cormen, Leiserson 和 Rivest 所著之 Introduction to Algorithms
(MIT Press, 1990) 一書為基礎,唯以下兩點不同:
(1) header 不僅指向 root,也指向紅黑樹的最左節點,以便實作出常數時間之
begin();並且也指向紅黑樹的最右節點,以便set 相關泛型演演算法(如set_union
等等)有線性時間之表現。
(2) 當一個即將被刪除之節點擁有兩個子節點時,它的successor node is
relinked into its place, rather than copied, 如此一來唯一失效(invalidated)的迭代器就只是那些referring to the deleted node.
*/
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>
__STL_BEGIN_NAMESPACE
typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false; // 紅色為 0
const __rb_tree_color_type __rb_tree_black = true; // 黑色為 1
struct __rb_tree_node_base
{
typedef __rb_tree_color_type color_type;
typedef __rb_tree_node_base* base_ptr;
color_type color; // 節點顏色,非紅即黑。
base_ptr parent; // RB 樹的許多操作,必須知道父節點。
base_ptr left; // 指向左節點。
base_ptr right; // 指向右節點。
static base_ptr minimum(base_ptr x)
{
while (x->left != 0) x = x->left; // 一直向左走,就會找到最小值,
return x; // 這是二元搜尋樹的特性。
}
static base_ptr maximum(base_ptr x)
{
while (x->right != 0) x = x->right; // 一直向右走,就會找到最大值,
return x; // 這是二元搜尋樹的特性。
}
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
typedef __rb_tree_node<Value>* link_type;
Value value_field; // 節點實值
};
struct __rb_tree_base_iterator
{
typedef __rb_tree_node_base::base_ptr base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
base_ptr node; // 它用來與容器之間產生一個連結關係(make a reference)
// 以下其實可實作於 operator++ 內,因為再無他處會呼叫此函式了。
void increment()
{
if (node->right != 0) { // 如果有右子節點。狀況(1)
node = node->right; // 就向右走
while (node->left != 0) // 然後一直往左子樹走到底
node = node->left; // 即是解答
}
else { // 沒有右子節點。狀況(2)
base_ptr y = node->parent; // 找出父節點
while (node == y->right) { // 如果現行節點本身是個右子節點,
node = y; // 就一直上溯,直到「不為右子節點」止。
y = y->parent;
}
if (node->right != y) // 「若此時的右子節點不等於此時的父節點」。
node = y; // 狀況(3) 此時的父節點即為解答。
// 否則此時的node 為解答。狀況(4)
}
// 注意,以上判斷「若此時的右子節點不等於此時的父節點」,是為了應付一種
// 特殊情況:我們欲尋找根節點的下一節點,而恰巧根節點無右子節點。
// 當然,以上特殊作法必須配合 RB-tree 根節點與特殊之header 之間的
// 特殊關係。
}
// 以下其實可實作於 operator-- 內,因為再無他處會呼叫此函式了。
void decrement()
{
if (node->color == __rb_tree_red && // 如果是紅節點,且
node->parent->parent == node) // 父節點的父節點等於自己,
node = node->right; // 狀況(1) 右子節點即為解答。
// 以上情況發生於node為header時(亦即 node 為 end() 時)。
// 注意,header 之右子節點即 mostright,指向整棵樹的 max 節點。
else if (node->left != 0) { // 如果有左子節點。狀況(2)
base_ptr y = node->left; // 令y指向左子節點
while (y->right != 0) // 當y有右子節點時
y = y->right; // 一直往右子節點走到底
node = y; // 最後即為答案
}
else { // 既非根節點,亦無左子節點。
base_ptr y = node->parent; // 狀況(3) 找出父節點
while (node == y->left) { // 當現行節點身為左子節點
node = y; // 一直交替往上走,直到現行節點
y = y->parent; // 不為左子節點
}
node = y; // 此時之父節點即為答案
}
}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
typedef Value value_type;
typedef Ref reference;
typedef Ptr pointer;
typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator;
typedef __rb_tree_iterator<Value, Ref, Ptr> self;
typedef __rb_tree_node<Value>* link_type;
__rb_tree_iterator() {}
__rb_tree_iterator(link_type x) { node = x; }
__rb_tree_iterator(const iterator& it) { node = it.node; }
reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++() { increment(); return *this; }
self operator++(int) {
self tmp = *this;
increment();
return tmp;
}
self& operator--() { decrement(); return *this; }
self operator--(int) {
self tmp = *this;
decrement();
return tmp;
}
};
inline bool operator==(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node == y.node;
// 兩個迭代器相等,意指其所指的節點相等。
}
inline bool operator!=(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node != y.node;
// 兩個迭代器不等,意指其所指的節點不等。
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline bidirectional_iterator_tag
iterator_category(const __rb_tree_base_iterator&) {
return bidirectional_iterator_tag();
}
inline __rb_tree_base_iterator::difference_type*
distance_type(const __rb_tree_base_iterator&) {
return (__rb_tree_base_iterator::difference_type*) 0;
}
template <class Value, class Ref, class Ptr>
inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) {
return (Value*) 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(),
// __rb_tree_rebalance(), __rb_tree_rebalance_for_erase()
// 新節點必為紅節點。如果安插處之父節點亦為紅節點,就違反紅黑樹規則,此時必須
// 做樹形旋轉(及顏色改變,在程式它處)。
inline void
__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
// x 為旋轉點
__rb_tree_node_base* y = x->right; // 令y 為旋轉點的右子節點
x->right = y->left;
if (y->left !=0)
y->left->parent = x; // 別忘了回馬槍設定父節點
y->parent = x->parent;
// 令 y 完全頂替 x 的地位(必須將 x 對其父節點的關係完全接收過來)
if (x == root) // x 為根節點
root = y;
else if (x == x->parent->left) // x 為其父節點的左子節點
x->parent->left = y;
else // x 為其父節點的右子節點
x->parent->right = y;
y->left = x;
x->parent = y;
}
// 新節點必為紅節點。如果安插處之父節點亦為紅節點,就違反紅黑樹規則,此時必須
// 做樹形旋轉(及顏色改變,在程式它處)。
inline void
__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
// x 為旋轉點
__rb_tree_node_base* y = x->left; // y 為旋轉點的左子節點
x->left = y->right;
if (y->right != 0)
y->right->parent = x; // 別忘了回馬槍設定父節點
y->parent = x->parent;
// 令 y 完全頂替 x 的地位(必須將 x 對其父節點的關係完全接收過來)
if (x == root) // x 為根節點
root = y;
else if (x == x->parent->right) // x 為其父節點的右子節點
x->parent->right = y;
else // x 為其父節點的左子節點
x->parent->left = y;
y->right = x;
x->parent = y;
}
// 重新令樹形平衡(改變顏色及旋轉樹形)
// 引數一為新增節點,引數二為 root
inline void
__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
x->color = __rb_tree_red; // 新節點必為紅
while (x != root && x->parent->color == __rb_tree_red) { // 父節點為紅
if (x->parent == x->parent->parent->left) { // 父節點為祖父節點之左子節點
__rb_tree_node_base* y = x->parent->parent->right; // 令y 為伯父節點
if (y && y->color == __rb_tree_red) { // 伯父節點存在,且為紅
x->parent->color = __rb_tree_black; // 更改父節點為黑
y->color = __rb_tree_black; // 更改伯父節點為黑
x->parent->parent->color = __rb_tree_red; // 更改祖父節點為紅
x = x->parent->parent;
}
else { // 無伯父節點,或伯父節點為黑
if (x == x->parent->right) { // 如果新節點為父節點之右子節點
x = x->parent;
__rb_tree_rotate_left(x, root); // 第一引數為左旋點
}
x->parent->color = __rb_tree_black; // 改變顏色
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_right(x->parent->parent, root); // 第一引數為右旋點
}
}
else { // 父節點為祖父節點之右子節點
__rb_tree_node_base* y = x->parent->parent->left; // 令y 為伯父節點
if (y && y->color == __rb_tree_red) { // 有伯父節點,且為紅
x->parent->color = __rb_tree_black; // 更改父節點為黑
y->color = __rb_tree_black; // 更改伯父節點為黑
x->parent->parent->color = __rb_tree_red; // 更改祖父節點為紅
x = x->parent->parent; // 準備繼續往上層檢查...
}
else { // 無伯父節點,或伯父節點為黑
if (x == x->parent->left) { // 如果新節點為父節點之左子節點
x = x->parent;
__rb_tree_rotate_right(x, root); // 第一引數為右旋點
}
x->parent->color = __rb_tree_black; // 改變顏色
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_left(x->parent->parent, root); // 第一引數為左旋點
}
}
} // while 結束
root->color = __rb_tree_black; // 根節點永遠為黑
}
inline __rb_tree_node_base*
__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,
__rb_tree_node_base*& root,
__rb_tree_node_base*& leftmost,
__rb_tree_node_base*& rightmost)
{
__rb_tree_node_base* y = z;
__rb_tree_node_base* x = 0;
__rb_tree_node_base* x_parent = 0;
if (y->left == 0) // z has at most one non-null child. y == z.
x = y->right; // x might be null.
else
if (y->right == 0) // z has exactly one non-null child. y == z.
x = y->left; // x is not null.
else { // z has two non-null children. Set y to
y = y->right; // z's successor. x might be null.
while (y->left != 0)
y = y->left;
x = y->right;
}
if (y != z) { // relink y in place of z. y is z's successor
z->left->parent = y;
y->left = z->left;
if (y != z->right) {
x_parent = y->parent;
if (x) x->parent = y->parent;
y->parent->left = x; // y must be a left child
y->right = z->right;
z->right->parent = y;
}
else
x_parent = y;
if (root == z)
root = y;
else if (z->parent->left == z)
z->parent->left = y;
else
z->parent->right = y;
y->parent = z->parent;
__STD::swap(y->color, z->color);
y = z;
// y now points to node to be actually deleted
}
else { // y == z
x_parent = y->parent;
if (x) x->parent = y->parent;
if (root == z)
root = x;
else
if (z->parent->left == z)
z->parent->left = x;
else
z->parent->right = x;
if (leftmost == z)
if (z->right == 0) // z->left must be null also
leftmost = z->parent;
// makes leftmost == header if z == root
else
leftmost = __rb_tree_node_base::minimum(x);
if (rightmost == z)
if (z->left == 0) // z->right must be null also
rightmost = z->parent;
// makes rightmost == header if z == root
else // x == z->left
rightmost = __rb_tree_node_base::maximum(x);
}
if (y->color != __rb_tree_red) {
while (x != root && (x == 0 || x->color == __rb_tree_black))
if (x == x_parent->left) {
__rb_tree_node_base* w = x_parent->right;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_left(x_parent, root);
w = x_parent->right;
}
if ((w->left == 0 || w->left->color == __rb_tree_black) &&
(w->right == 0 || w->right->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->right == 0 || w->right->color == __rb_tree_black) {
if (w->left) w->left->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_right(w, root);
w = x_parent->right;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->right) w->right->color = __rb_tree_black;
__rb_tree_rotate_left(x_parent, root);
break;
}
} else { // same as above, with right <-> left.
__rb_tree_node_base* w = x_parent->left;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_right(x_parent, root);
w = x_parent->left;
}
if ((w->right == 0 || w->right->color == __rb_tree_black) &&
(w->left == 0 || w->left->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->left == 0 || w->left->color == __rb_tree_black) {
if (w->right) w->right->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_left(w, root);
w = x_parent->left;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->left) w->left->color = __rb_tree_black;
__rb_tree_rotate_right(x_parent, root);
break;
}
}
if (x) x->color = __rb_tree_black;
}
return y;
}
template <class Key, class Value, class KeyOfValue, class Compare,
class Alloc = alloc>
class rb_tree {
protected:
typedef void* void_pointer;
typedef __rb_tree_node_base* base_ptr;
typedef __rb_tree_node<Value> rb_tree_node;
typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;
typedef __rb_tree_color_type color_type;
public:
// 注意,沒有定義 iterator(喔,不,定義在後面)
typedef Key key_type;
typedef Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef rb_tree_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
protected:
link_type get_node() { return rb_tree_node_allocator::allocate(); }
void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }
link_type create_node(const value_type& x) {
link_type tmp = get_node(); // 配置空間
__STL_TRY {
construct(&tmp->value_field, x); // 建構內容
}
__STL_UNWIND(put_node(tmp));
return tmp;
}
link_type clone_node(link_type x) { // 複製一個節點(的值和色)
link_type tmp = create_node(x->value_field);
tmp->color = x->color;
tmp->left = 0;
tmp->right = 0;
return tmp;
}
void destroy_node(link_type p) {
destroy(&p->value_field); // 解構內容
put_node(p); // 釋還記憶體
}
protected:
// RB-tree 只以三筆資料表現。
size_type node_count; // 追蹤記錄樹的大小(節點數量)
link_type header;
Compare key_compare; // 節點間的鍵值大小比較準則。應該會是個 function object。
// 以下三個函式用來方便取得 header 的成員
link_type& root() const { return (link_type&) header->parent; }
link_type& leftmost() const { return (link_type&) header->left; }
link_type& rightmost() const { return (link_type&) header->right; }
// 以下六個函式用來方便取得節點 x 的成員
static link_type& left(link_type x) { return (link_type&)(x->left); }
static link_type& right(link_type x) { return (link_type&)(x->right); }
static link_type& parent(link_type x) { return (link_type&)(x->parent); }
static reference value(link_type x) { return x->value_field; }
static const Key& key(link_type x) { return KeyOfValue()(value(x)); }
static color_type& color(link_type x) { return (color_type&)(x->color); }
// 以下六個函式用來方便取得節點 x 的成員
static link_type& left(base_ptr x) { return (link_type&)(x->left); }
static link_type& right(base_ptr x) { return (link_type&)(x->right); }
static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }
static reference value(base_ptr x) { return ((link_type)x)->value_field; }
static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));}
static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }
// 求取極大值和極小值。node class 有實作此功能,交給它們完成即可。
static link_type minimum(link_type x) {
return (link_type) __rb_tree_node_base::minimum(x);
}
static link_type maximum(link_type x) {
return (link_type) __rb_tree_node_base::maximum(x);
}
public:
typedef __rb_tree_iterator<value_type, reference, pointer> iterator;
typedef __rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
private:
iterator __insert(base_ptr x, base_ptr y, const value_type& v);
link_type __copy(link_type x, link_type p);
void __erase(link_type x);
void init() {
header = get_node(); // 產生一個節點空間,令 header 指向它
color(header) = __rb_tree_red; // 令 header 為紅色,用來區分 header
// 和 root(在 iterator.operator++ 中)
root() = 0;
leftmost() = header; // 令 header 的左子節點為自己。
rightmost() = header; // 令 header 的右子節點為自己。
}
public:
// allocation/deallocation
rb_tree(const Compare& comp = Compare())
: node_count(0), key_compare(comp) { init(); }
// 以另一個 rb_tree 物件 x 為初值
rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x)
: node_count(0), key_compare(x.key_compare)
{
header = get_node(); // 產生一個節點空間,令 header 指向它
color(header) = __rb_tree_red; // 令 header 為紅色
if (x.root() == 0) { // 如果 x 是個空白樹
root() = 0;
leftmost() = header; // 令 header 的左子節點為自己。
rightmost() = header; // 令 header 的右子節點為自己。
}
else { // x 不是一個空白樹
__STL_TRY {
root() = __copy(x.root(), header); // ???
}
__STL_UNWIND(put_node(header));
leftmost() = minimum(root()); // 令 header 的左子節點為最小節點
rightmost() = maximum(root()); // 令 header 的右子節點為最大節點
}
node_count = x.node_count;
}
~rb_tree() {
clear();
put_node(header);
}
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);
public:
// accessors:
Compare key_comp() const { return key_compare; }
iterator begin() { return leftmost(); } // RB 樹的起頭為最左(最小)節點處
const_iterator begin() const { return leftmost(); }
iterator end() { return header; } // RB 樹的終點為 header所指處
const_iterator end() const { return header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return node_count == 0; }
size_type size() const { return node_count; }
size_type max_size() const { return size_type(-1); }
void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {
// RB-tree 只以三個資料成員表現。所以互換兩個 RB-trees時,
// 只需將這三個成員互換即可。
__STD::swap(header, t.header);
__STD::swap(node_count, t.node_count);
__STD::swap(key_compare, t.key_compare);
}
public:
// insert/erase
// 將 x 安插到 RB-tree 中(保持節點值獨一無二)。
pair<iterator,bool> insert_unique(const value_type& x);
// 將 x 安插到 RB-tree 中(允許節點值重複)。
iterator insert_equal(const value_type& x);
iterator insert_unique(iterator position, const value_type& x);
iterator insert_equal(iterator position, const value_type& x);
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert_unique(InputIterator first, InputIterator last);
template <class InputIterator>
void insert_equal(InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator first, const_iterator last);
void insert_unique(const value_type* first, const value_type* last);
void insert_equal(const_iterator first, const_iterator last);
void insert_equal(const value_type* first, const value_type* last);
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void erase(const key_type* first, const key_type* last);
void clear() {
if (node_count != 0) {
__erase(root());
leftmost() = header;
root() = 0;
rightmost() = header;
node_count = 0;
}
}
public:
// 集合(set)的各種操作行為:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
public:
// Debugging.
bool __rb_verify() const;
};
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
x.swap(y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {
if (this != &x) {
// Note that Key may be a constant type.
clear();
node_count = 0;
key_compare = x.key_compare;
if (x.root() == 0) {
root() = 0;
leftmost() = header;
rightmost() = header;
}
else {
root() = __copy(x.root(), header);
leftmost() = minimum(root());
rightmost() = maximum(root());
node_count = x.node_count;
}
}
return *this;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
__insert(base_ptr x_, base_ptr y_, const Value& v) {
// 引數x_ 為新值安插點,引數y_ 為安插點之父節點,引數v 為新值。
link_type x = (link_type) x_;
link_type y = (link_type) y_;
link_type z;
// key_compare 是鍵值大小比較準則。應該會是個 function object。
if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {
z = create_node(v); // 產生一個新節點
left(y) = z; // 這使得當 y 即為 header時,leftmost() = z
if (y == header) {
root() = z;
rightmost() = z;
}
else if (y == leftmost()) // 如果y為最左節點
leftmost() = z; // 維護leftmost(),使它永遠指向最左節點
}
else {
z = create_node(v); // 產生一個新節點
right(y) = z; // 令新節點成為安插點之父節點 y 的右子節點
if (y == rightmost())
rightmost() = z; // 維護rightmost(),使它永遠指向最右節點
}
parent(z) = y; // 設定新節點的父節點
left(z) = 0; // 設定新節點的左子節點
right(z) = 0; // 設定新節點的右子節點
// 新節點的顏色將在 __rb_tree_rebalance() 設定(並調整)
__rb_tree_rebalance(z, header->parent); // 引數一為新增節點,引數二為 root
++node_count; // 節點數累加
return iterator(z); // 傳回一個迭代器,指向新增節點
}
// 安插新值;節點鍵值允許重複。
// 注意,傳回值是一個 RB-tree 迭代器,指向新增節點
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)
{
link_type y = header;
link_type x = root(); // 從根節點開始
while (x != 0) { // 從根節點開始,往下尋找適當的安插點
y = x;
x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);
// 以上,遇「大」則往左,遇「小於或等於」則往右
}
return __insert(x, y, v);
}
// 安插新值;節點鍵值不允許重複,若重複則安插無效。
// 注意,傳回值是個pair,第一元素是個 RB-tree 迭代器,指向新增節點,
// 第二元素表示安插成功與否。
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)
{
link_type y = header;
link_type x = root(); // 從根節點開始
bool comp = true;
while (x != 0) { // 從根節點開始,往下尋找適當的安插點
y = x;
comp = key_compare(KeyOfValue()(v), key(x)); // v 鍵值小於目前節點之鍵值?
x = comp ? left(x) : right(x); // 遇「大」則往左,遇「小於或等於」則往右
}
// 離開 while 迴圈之後,y 所指即安插點之父節點(此時的它必為葉節點)
iterator j = iterator(y); // 令迭代器j指向安插點之父節點 y
if (comp) // 如果離開 while 迴圈時 comp 為真(表示遇「大」,將安插於左側)
if (j == begin()) // 如果安插點之父節點為最左節點
return pair<iterator,bool>(__insert(x, y, v), true);
// 以上,x 為安插點,y 為安插點之父節點,v 為新值。
else // 否則(安插點之父節點不為最左節點)
--j; // 調整 j,回頭準備測試...
if (key_compare(key(j.node), KeyOfValue()(v)))
// 小於新值(表示遇「小」,將安插於右側)
return pair<iterator,bool>(__insert(x, y, v), true);
// 進行至此,表示新值一定與樹中鍵值重複,那麼就不該插入新值。
return pair<iterator,bool>(j, false);
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
else if (position.node == header) // end()
if (key_compare(key(rightmost()), KeyOfValue()(v)))
return __insert(0, rightmost(), v);
else
return insert_unique(v).first;
else {
iterator before = position;
--before;
if (key_compare(key(before.node), KeyOfValue()(v))
&& key_compare(KeyOfValue()(v), key(position.node)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
}
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
else if (position.node == header) // end()
if (!key_compare(KeyOfValue()(v), key(rightmost())))
return __insert(0, rightmost(), v);
else
return insert_equal(v);
else {
iterator before = position;
--before;
if (!key_compare(KeyOfValue()(v), key(before.node))
&& !key_compare(key(position.node), KeyOfValue()(v)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#else /* __STL_MEMBER_TEMPLATES */
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {
link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,
header->parent,
header->left,
header->right);
destroy_node(y);
--node_count;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {
pair<iterator,iterator> p = equal_range(x);
size_type n = 0;
distance(p.first, p.second, n);
erase(p.first, p.second);
return n;
}
template <class K, class V, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type
rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {
// structural copy. x and p must be non-null.
link_type top = clone_node(x);
top->parent = p;
__STL_TRY {
if (x->right)
top->right = __copy(right(x), top);
p = top;
x = left(x);
while (x != 0) {
link_type y = clone_node(x);
p->left = y;
y->parent = p;
if (x->right)
y->right = __copy(right(x), y);
p = y;
x = left(x);
}
}
__STL_UNWIND(__erase(top));
return top;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {
// erase without rebalancing
while (x != 0) {
__erase(right(x));
link_type y = left(x);
destroy_node(x);
x = y;
}
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first,
iterator last) {
if (first == begin() && last == end())
clear();
else
while (first != last) erase(first++);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,
const Key* last) {
while (first != last) erase(*first++);
}
// 尋找 RB 樹中是否有鍵值為 k 的節點
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {
link_type y = header; // Last node which is not less than k.
link_type x = root(); // Current node.
while (x != 0)
// 以下,key_compare 是節點鍵值大小比較準則。應該會是個 function object。
if (!key_compare(key(x), k))
// 進行到這裡,表示 x 鍵值大於 k。遇到大值就向左走。
y = x, x = left(x); // 注意語法!
else
// 進行到這裡,表示 x 鍵值小於 k。遇到小值就向右走。
x = right(x);
iterator j = iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
// 尋找 RB 樹中是否有鍵值為 k 的節點
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0) {
// 以下,key_compare 是節點鍵值大小比較準則。應該會是個 function object。
if (!key_compare(key(x), k))
// 進行到這裡,表示 x 鍵值大於 k。遇到大值就向左走。
y = x, x = left(x); // 注意語法!
else
// 進行到這裡,表示 x 鍵值小於 k。遇到小值就向右走。
x = right(x);
}
const_iterator j = const_iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
// 計算 RB 樹中鍵值為 k 的節點個數
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {
pair<const_iterator, const_iterator> p = equal_range(k);
size_type n = 0;
distance(p.first, p.second, n);
return n;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
return iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
return const_iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) {
link_type y = header; /* Last node which is greater than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (key_compare(k, key(x)))
y = x, x = left(x);
else
x = right(x);
return iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const {
link_type y = header; /* Last node which is greater than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (key_compare(k, key(x)))
y = x, x = left(x);
else
x = right(x);
return const_iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) {
return pair<iterator, iterator>(lower_bound(k), upper_bound(k));
}
template <class Key, class Value, class KoV, class Compare, class Alloc>
inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator,
typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator>
rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const {
return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k));
}
// 計算從 node 至 root 路徑中的黑節點數量。
inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root)
{
if (node == 0)
return 0;
else {
int bc = node->color == __rb_tree_black ? 1 : 0;
if (node == root)
return bc;
else
return bc + __black_count(node->parent, root); // 累加
}
}
// 驗證己身這棵樹是否符合 RB 樹的條件
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
bool
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const
{
// 空樹,符合RB樹標準
if (node_count == 0 || begin() == end())
return node_count == 0 && begin() == end() &&
header->left == header && header->right == header;
// 最左(葉)節點至 root 路徑內的黑節點數
int len = __black_count(leftmost(), root());
// 以下走訪整個RB樹,針對每個節點(從最小到最大)...
for (const_iterator it = begin(); it != end(); ++it) {
link_type x = (link_type) it.node; // __rb_tree_base_iterator::node
link_type L = left(x); // 這是左子節點
link_type R = right(x); // 這是右子節點
if (x->color == __rb_tree_red)
if ((L && L->color == __rb_tree_red) ||
(R && R->color == __rb_tree_red))
return false; // 父子節點同為紅色,不符合 RB 樹的要求。
if (L && key_compare(key(x), key(L))) // 目前節點的鍵值小於左子節點鍵值
return false; // 不符合二元搜尋樹的要求。
if (R && key_compare(key(R), key(x))) // 目前節點的鍵值大於右子節點鍵值
return false; // 不符合二元搜尋樹的要求。
// 「葉節點至 root」路徑內的黑節點數,與「最左節點至 root」路徑內的黑節點數不同。
// 這不符合 RB 樹的要求。
if (!L && !R && __black_count(x, root()) != len)
return false;
}
if (leftmost() != __rb_tree_node_base::minimum(root()))
return false; // 最左節點不為最小節點,不符合二元搜尋樹的要求。
if (rightmost() != __rb_tree_node_base::maximum(root()))
return false; // 最右節點不為最大節點,不符合二元搜尋樹的要求。
return true;
}
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_TREE_H */
// Local Variables:
// mode:C++
// End:
相關文章
- 《STL原始碼剖析》-- memory原始碼
- 《STL原始碼剖析》 -- stl_algo.h原始碼Go
- 《STL原始碼剖析》-- stl_algobase.h原始碼Go
- 《STL原始碼剖析》-- stl_hashtable.h原始碼
- 《STL原始碼剖析》-- stl_multimap.h原始碼
- 《STL原始碼剖析》-- stl_map.h原始碼
- 《STL原始碼剖析》-- stl_multiset.h原始碼
- 《STL原始碼剖析》-- stl_set.h原始碼
- 《STL原始碼剖析》-- stl_heap.h原始碼
- 《STL原始碼剖析》-- stl_slist.h原始碼
- 《STL原始碼剖析》-- stl_queue.h原始碼
- 《STL原始碼剖析》-- stl_stack.h原始碼
- 《STL原始碼剖析》-- stl_deque.h原始碼
- 《STL原始碼剖析》-- stl_list.h原始碼
- 《STL原始碼剖析》-- stl_pair.h原始碼AI
- 《STL原始碼剖析》-- stl_vector.h原始碼
- 《STL原始碼剖析》-- stl_iterator.h原始碼
- 《STL原始碼剖析》-- stl_uninitialized.h原始碼Zed
- 《STL原始碼剖析》-- stl_alloc.h原始碼
- STL原始碼剖析——vector容器原始碼
- 《STL原始碼剖析》-- stl_relops.h原始碼
- 《STL原始碼剖析》-- stl_hash_map.h原始碼
- 《STL原始碼剖析》-- stl_hash_set.h原始碼
- 《STL原始碼剖析》-- stl_construct.h原始碼Struct
- 《STL原始碼剖析》-- stl_config.h原始碼
- 《STL原始碼剖析》-- defalloc.h原始碼
- 《STL原始碼剖析》 -- 寫在最後原始碼
- 《STL原始碼剖析》-- 特別說明原始碼
- 《STL原始碼剖析》-- type_traits.h原始碼AI
- 【STL 原始碼剖析】淺談 STL 迭代器與 traits 程式設計技法原始碼AI程式設計
- C++(STL原始碼):37---仿函式(函式物件)原始碼剖析C++原始碼函式物件
- 侯老師--STL原始碼剖析--書中的疑問二 (轉)原始碼
- 侯老師--STL原始碼剖析--書中的疑問三 (轉)原始碼
- 侯老師--STL原始碼剖析--書中的疑問一 (轉)原始碼
- Java集合原始碼剖析——ArrayList原始碼剖析Java原始碼
- 【Java集合原始碼剖析】ArrayList原始碼剖析Java原始碼
- 【Java集合原始碼剖析】Vector原始碼剖析Java原始碼
- 【Java集合原始碼剖析】HashMap原始碼剖析Java原始碼HashMap