每日導數76

会飞的鱼13發表於2024-03-06

難難難的雙參問題

已知函式\(f(x)=\ln(1+x)+\dfrac{x^2}{2}\)

(1)當\(x>0\),比較\(f(x)\)\(x\)的大小

(2)若函式\(g(x)=\cos x+\dfrac{x^2}{2}\),且\(f\left(e^{\frac{a}{2}}\right)=g(b)-1(a>0,b>0)\),證明:\(f(b^2)+1>g(a+1)\)

(1)做差,記\(\varphi(x)=f(x)-x=\ln(1+x)+\dfrac{x^2}{2}-x\)

\(\varphi^{\prime}(x)=\dfrac{1}{x+1}+x-1=\dfrac{1}{x+1}+x+1-2\geq 2-2=0\)

從而\(\varphi(x)\)單調遞增,則\(\varphi(x)\geq \varphi(0)=0\)

從而\(f(x)\geq x\)

(2)設\(h(x)=f(x)+1-g(x)=\ln(1+x)+1-\cos x\)

\(x>0\)時,\(1-\cos x\geq 0,\ln(1+x)>0\),則\(h(x)>0\)恆成立

\(h\left(e^{\frac{a}{2}}\right)>0\),得\(f\left(e^{\frac{a}{2}}\right)+1>g\left(e^{\frac{a}{2}}\right)\)

從而\(g(b)>g\left(e^{\frac{a}{2}}\right)\)

不難證明\(g(x)\)單調遞增

\(g(b)>g\left(e^{\frac{a}{2}}\right)\)得到\(b>e^{\frac{a}{2}}\)

同理\(h(b)=f(b)+1-g(b)>0\)

\(f(b^2)+1>g(b^2)\)

則要證\(f(b^2)+1>g(a+1)\)

即證:\(g(b^2)>g(a+1)\)

即證:\(b^2>a+1\)

\(b>e^{\frac{a}{2}}\),則\(b^2>e^a\)

\(e^a>a+1\)

\(b^2>e^a>a+1\)

相關文章