lintcode Range Sum Query 2D - Immutable
Range Sum Query 2D - Immutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1,
col1)
and lower right corner (row2, col2)
.
注意事項
- You may assume that the matrix does not change.
- There are many calls to sumRegion function.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
樣例
Given matrix =
[
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
我自己寫的演算法是逐個相加,測試通過但是時間花費為800ms,以下為我的程式碼
class NumMatrix {
public:
NumMatrix(vector<vector<int>> ma) :matrix(ma){
}
int sumRegion(int row1, int col1, int row2, int col2) {
int r1=row1,c1,r2=row2,c2=col2;
int sum=0;
for(;r1<=r2;r1++)
{
c1=col1;
for(;c1<=c2;c1++)
{
sum+=matrix[r1][c1];
}
}
return sum;
}
private:vector<vector<int>>matrix;
};
/* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
我看的別人的程式碼,測試時間為300ms,比我的快一倍,想不明白都是O(n2)的時間複雜度,只不過它的計算是在建構函式中,先記錄下來
class NumMatrix {
private:
vector<vector<int>> dp;
public:
NumMatrix(vector<vector<int>> matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) {
return;
}
int n = matrix.size();
int m = matrix[0].size();
dp.resize(n + 1, vector<int>(m + 1, 0));
for (int r = 0; r < n; r++) {
for (int c = 0; c < m; c++) {
dp[r + 1][c + 1] = dp[r + 1][c] + dp[r][c + 1] + matrix[r][c] - dp[r][c];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return dp[row2 + 1][col2 + 1] - dp[row1][col2 + 1] - dp[row2 + 1][col1] + dp[row1][col1];
}
};
相關文章
- LeetCode-Range Sum Query 2D - ImmutableLeetCode
- LeetCode-Range Sum Query- ImmutableLeetCode
- LeetCode-Range Sum Query 2D - MutableLeetCode
- LeetCode-Range Sum Query - MutableLeetCode
- 【Lintcode】1559. Take the Element and Query the Sum
- Range Minimum Sum
- LintCode-Search for a Range
- LintCode-K Sum
- LintCode-Subarray Sum
- [LintCode] 3Sum Smaller
- LintCode-Subarray Sum Closest
- LeetCode-Count of Range SumLeetCode
- LintCode-Minimum Path Sum
- ABC 288 D - Range Add Query
- abc174F Range Set Query
- (構造) CF1758D Range = √Sum
- qoj6509. Not Another Range Query Problem
- LintCode-Search 2D Matrix II
- LintCode-Search Range in Binary Search Tree
- [LintCode/LeetCode] Check Sum of K PrimesLeetCode
- [題解]AT_abc288_d [ABC288D] Range Add Query
- Immutable&ReduxinAngularWayReduxNaNAngular
- 學習筆記——immutable筆記
- Immutable.js 初識JS
- 不可變資料之Immutable
- Guava集合--Immutable(不可變)集合Guava
- 日記3(immutable.js)JS
- GCD SUMGC
- 秒殺 2Sum 3Sum 4Sum 演算法題演算法
- HTML input rangeHTML
- Python range()Python
- Range Sparse Net
- react和immutable偶遇的那些事React
- 這個immutable Data react實踐React
- React專案整合Immutable.jsReactJS
- Redux vs Mobx系列(-):immutable vs mutableRedux
- Redux + Immutable.js 效能優化ReduxJS優化
- phpmysqlimysqli_query()mysqli_real_query()PHPMySql