斐波那契數列

静雅斋数学發表於2024-11-20

前情概要

斐波那契數列又稱黃金分割數列,因數學家列昂納多·斐波那契(Leonardoda Fibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數列”,指的是數列 \(1\) , \(1\) , \(2\) , \(3\) , \(5\) , \(8\) , \(13\) , \(\cdots\),在數學上,斐波納契數列以遞迴的方法定義 \(a_1=1\)\(a_2=1\),且滿足 \(a_{n+1}\) \(=\) \(a_n\) \(+\) \(a_{n-1}\)\(n\) \(\geqslant\) \(2\)[1]

圖象繪製

通項公式

  • 斐波那契數列 \(\{a_n\}\) 的遞推關係式滿足條件:\(a_n=\left\{\begin{array}{l}1,&n=1\\1,&n=2\\a_{n-1}+a_{n-2},&n\geq 3\end{array}\right.\),其通項公式如下:

\[a_n=\cfrac{1}{\sqrt{5}}\bigg[(\cfrac{1+\sqrt{5}}{2})^n-(\cfrac{1-\sqrt{5}}{2})^n\bigg] \]

詳細求解過程,請參閱斐波那契數列通項公式的求解

斐波那契數列與黃金分割比

直接給結論:斐波那契數列相鄰項比值的極限是 \(0.618\),意思就是隨著斐波那契數列越來越大,相鄰兩項的比值越來越接近 \(0.618\),證明也非常簡單,只要有大學高數的極限知識即可,

典例剖析

【與斐波那契數列有關的歸納推理】某種樹的分枝生長規律如圖所示,第1年到第5年的分枝數分別為\(1\)\(1\)\(2\)\(3\)\(5\),則預計第10年樹的分枝數為\(\qquad\)

$A.21$ $B.34$ $C.52$ $D.55$

分析:本題目涉及到的數列為“斐波那契數列”,其構成規律為:\(a_1=1\)\(a_2=1\)已知,其他項由遞推公式\(a_{n+2}\)\(=\)\(a_{n+1}\)\(+\)\(a_n\)\(n\in N^*\)得到,

\(a_6=8\)\(a_7=13\)\(a_8=21\)\(a_9=34\)\(a_{10}=55\)\(a_{11}=89\),故選\(D\)

【2021\(\cdot\)上海模擬】著名的斐波那契數列 \(\{a_{n}\}\): \(1\)\(1\)\(2\)\(3\)\(5\)\(8\)\(\cdots\), 滿足 \(a_{1}\)\(=\)\(a_{2}\)\(=\)\(1\)\(a_{n+2}\)\(=\)\(a_{n+1}\)\(+\)\(a_{n}\)\((n\in {N}^{*})\),那麼 \(1\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\) 是斐波那契數列中的第【\(\quad\)】項

$A.2020$ $B.2021$ $C.2022$ $D.2023$

解析: 因為 \(a_{1}\)\(=\)\(a_{2}\)\(=\)\(1\) ,所以

\(1\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)

\(=\)\(a_{2}\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)

\(=\)\(a_{4}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)

\(=\)\(a_{6}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)

\(=\)\(\cdots\)\(+\)\(a_{2019}\)\(+\)\(a_{2021}\)

\(=\)\(a_{2020}\)\(+\)\(a_{2021}\)\(=\)\(a_{2022}\) ,故選 \(C\) .

相關延申

函式的週期,\(f(x+2)=f(x+1)-f(x)\),求週期;


  1. 斐波那契數列的通項公式的推導過程 ↩︎

相關文章