前情概要
斐波那契數列又稱黃金分割數列,因數學家列昂納多·斐波那契(Leonardoda Fibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數列”,指的是數列 \(1\) , \(1\) , \(2\) , \(3\) , \(5\) , \(8\) , \(13\) , \(\cdots\),在數學上,斐波納契數列以遞迴的方法定義 \(a_1=1\),\(a_2=1\),且滿足 \(a_{n+1}\) \(=\) \(a_n\) \(+\) \(a_{n-1}\),\(n\) \(\geqslant\) \(2\);[1]
圖象繪製
通項公式
- 斐波那契數列 \(\{a_n\}\) 的遞推關係式滿足條件:\(a_n=\left\{\begin{array}{l}1,&n=1\\1,&n=2\\a_{n-1}+a_{n-2},&n\geq 3\end{array}\right.\),其通項公式如下:
詳細求解過程,請參閱斐波那契數列通項公式的求解
斐波那契數列與黃金分割比
直接給結論:斐波那契數列相鄰項比值的極限是 \(0.618\),意思就是隨著斐波那契數列越來越大,相鄰兩項的比值越來越接近 \(0.618\),證明也非常簡單,只要有大學高數的極限知識即可,
典例剖析
分析:本題目涉及到的數列為“斐波那契數列”,其構成規律為:\(a_1=1\),\(a_2=1\)已知,其他項由遞推公式\(a_{n+2}\)\(=\)\(a_{n+1}\)\(+\)\(a_n\),\(n\in N^*\)得到,
故\(a_6=8\),\(a_7=13\),\(a_8=21\),\(a_9=34\),\(a_{10}=55\),\(a_{11}=89\),故選\(D\)。
解析: 因為 \(a_{1}\)\(=\)\(a_{2}\)\(=\)\(1\) ,所以
\(1\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{2}\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{4}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{6}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(\cdots\)\(+\)\(a_{2019}\)\(+\)\(a_{2021}\)
\(=\)\(a_{2020}\)\(+\)\(a_{2021}\)\(=\)\(a_{2022}\) ,故選 \(C\) .
相關延申
函式的週期,\(f(x+2)=f(x+1)-f(x)\),求週期;
斐波那契數列的通項公式的推導過程 ↩︎