懂樂理的音樂專業人士可以透過寫樂譜並透過樂器演奏來展示他們的音樂創意和構思,但不識譜的素人如果也想跨界玩兒音樂,那麼門檻兒就有點高了。但隨著人工智慧技術的快速迭代,現在任何一個人都可以成為“創作型歌手”,即自主創作並且讓AI進行演唱,極大地降低了音樂製作的門檻。
本次我們基於PaddleHub和Diffsinger實現音訊歌聲合成操作,魔改歌曲《學貓叫》。
配置PaddleHub
首先確保本地就已經安裝好了百度的PaddlePaddle深度學習框架,隨後輸入命令安裝PaddleHub庫:
pip install paddlehub@2.4.0
PaddleHub是基於PaddlePaddle生態下的預訓練模型,旨在為開發者提供豐富的、高質量的、直接可用的預訓練模型,也就是說語音模型我們不需要單獨訓練,直接使用paddlehub提供的模型進行推理即可,注意這裡版本為最新的2.4.0。
安裝成功之後,配置環境變數:
由於PaddleHub會把音色模型下載到本地,如果不配置環境變數,預設會下載到系統的C盤,所以這裡單獨設定為E盤。
隨後需要將Win11的cmd編碼設定為utf-8:
首先找到設定頁面
搜尋地區,並點選更改國家或地區
選擇管理語言設定
選擇更改系統區域設定
勾選Beta版: 使用Unicode UTF-8 提供全球語言支援,重啟生效。
如果不設定utf-8編碼,PaddleHub會因為亂碼問題報錯。
接著安裝diffsinger:
hub install diffsinger
隨後在終端執行程式碼:
import paddlehub as hub
module = hub.Module(name="diffsinger")
這裡指定diffsinger的模型庫,程式返回:
C:\Program Files\Python310\lib\site-packages\_distutils_hack\__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
| Hparams chains: ['configs/config_base.yaml', 'configs/tts/base.yaml', 'configs/tts/fs2.yaml', 'configs/tts/base_zh.yaml', 'configs/singing/base.yaml', 'usr\\configs\\base.yaml', 'usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml', 'model\\config.yaml']
| Hparams:
K_step: 100, accumulate_grad_batches: 1, audio_num_mel_bins: 80, audio_sample_rate: 24000, base_config: ['usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml'],
binarization_args: {'shuffle': False, 'with_txt': True, 'with_wav': True, 'with_align': True, 'with_spk_embed': False, 'with_f0': True, 'with_f0cwt': True}, binarizer_cls: data_gen.singing.binarize.OpencpopBinarizer, binary_data_dir: data/binary/opencpop-midi-dp, check_val_every_n_epoch: 10, clip_grad_norm: 1,
content_cond_steps: [], cwt_add_f0_loss: False, cwt_hidden_size: 128, cwt_layers: 2, cwt_loss: l1,
cwt_std_scale: 0.8, datasets: ['popcs'], debug: False, dec_ffn_kernel_size: 9, dec_layers: 4,
decay_steps: 50000, decoder_type: fft, dict_dir: , diff_decoder_type: wavenet, diff_loss_type: l1,
dilation_cycle_length: 4, dropout: 0.1, ds_workers: 4, dur_enc_hidden_stride_kernel: ['0,2,3', '0,2,3', '0,1,3'], dur_loss: mse,
dur_predictor_kernel: 3, dur_predictor_layers: 5, enc_ffn_kernel_size: 9, enc_layers: 4, encoder_K: 8,
encoder_type: fft, endless_ds: True, ffn_act: gelu, ffn_padding: SAME, fft_size: 512,
fmax: 12000, fmin: 30, fs2_ckpt: , gaussian_start: True, gen_dir_name: ,
gen_tgt_spk_id: -1, hidden_size: 256, hop_size: 128, infer: False, keep_bins: 80,
lambda_commit: 0.25, lambda_energy: 0.0, lambda_f0: 0.0, lambda_ph_dur: 1.0, lambda_sent_dur: 1.0,
lambda_uv: 0.0, lambda_word_dur: 1.0, load_ckpt: , log_interval: 100, loud_norm: False,
lr: 0.001, max_beta: 0.06, max_epochs: 1000, max_eval_sentences: 1, max_eval_tokens: 60000,
max_frames: 8000, max_input_tokens: 1550, max_sentences: 48, max_tokens: 40000, max_updates: 160000,
mel_loss: ssim:0.5|l1:0.5, mel_vmax: 1.5, mel_vmin: -6.0, min_level_db: -120, norm_type: gn,
num_ckpt_keep: 3, num_heads: 2, num_sanity_val_steps: 1, num_spk: 1, num_test_samples: 0,
num_valid_plots: 10, optimizer_adam_beta1: 0.9, optimizer_adam_beta2: 0.98, out_wav_norm: False, pe_ckpt: checkpoints/0102_xiaoma_pe,
pe_enable: True, pitch_ar: False, pitch_enc_hidden_stride_kernel: ['0,2,5', '0,2,5', '0,2,5'], pitch_extractor: parselmouth, pitch_loss: l1,
pitch_norm: log, pitch_type: frame, pre_align_args: {'use_tone': False, 'forced_align': 'mfa', 'use_sox': True, 'txt_processor': 'zh_g2pM', 'allow_no_txt': False, 'denoise': False}, pre_align_cls: data_gen.singing.pre_align.SingingPreAlign, predictor_dropout: 0.5,
predictor_grad: 0.1, predictor_hidden: -1, predictor_kernel: 5, predictor_layers: 5, prenet_dropout: 0.5,
prenet_hidden_size: 256, pretrain_fs_ckpt: , processed_data_dir: data/processed/popcs, profile_infer: False, raw_data_dir: data/raw/popcs,
ref_norm_layer: bn, rel_pos: True, reset_phone_dict: True, residual_channels: 256, residual_layers: 20,
save_best: False, save_ckpt: True, save_codes: ['configs', 'modules', 'tasks', 'utils', 'usr'], save_f0: True, save_gt: False,
schedule_type: linear, seed: 1234, sort_by_len: True, spec_max: [-0.79453, -0.81116, -0.61631, -0.30679, -0.13863, -0.050652, -0.11563, -0.10679, -0.091068, -0.062174, -0.075302, -0.072217, -0.063815, -0.073299, 0.007361, -0.072508, -0.050234, -0.16534, -0.26928, -0.20782, -0.20823, -0.11702, -0.070128, -0.065868, -0.012675, 0.0015121, -0.089902, -0.21392, -0.23789, -0.28922, -0.30405, -0.23029, -0.22088, -0.21542, -0.29367, -0.30137, -0.38281, -0.4359, -0.28681, -0.46855, -0.57485, -0.47022, -0.54266, -0.44848, -0.6412, -0.687, -0.6486, -0.76436, -0.49971, -0.71068, -0.69724, -0.61487, -0.55843, -0.69773, -0.57502, -0.70919, -0.82431, -0.84213, -0.90431, -0.8284, -0.77945, -0.82758, -0.87699, -1.0532, -1.0766, -1.1198, -1.0185, -0.98983, -1.0001, -1.0756, -1.0024, -1.0304, -1.0579, -1.0188, -1.05, -1.0842, -1.0923, -1.1223, -1.2381, -1.6467], spec_min: [-6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0],
spk_cond_steps: [], stop_token_weight: 5.0, task_cls: usr.diffsinger_task.DiffSingerMIDITask, test_ids: [], test_input_dir: ,
test_num: 0, test_prefixes: ['popcs-說散就散', 'popcs-隱形的翅膀'], test_set_name: test, timesteps: 100, train_set_name: train,
use_denoise: False, use_energy_embed: False, use_gt_dur: False, use_gt_f0: False, use_midi: True,
use_nsf: True, use_pitch_embed: False, use_pos_embed: True, use_spk_embed: False, use_spk_id: False,
use_split_spk_id: False, use_uv: True, use_var_enc: False, val_check_interval: 2000, valid_num: 0,
valid_set_name: valid, validate: False, vocoder: vocoders.hifigan.HifiGAN, vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128, warmup_updates: 2000,
wav2spec_eps: 1e-6, weight_decay: 0, win_size: 512, work_dir: ,
Using these as onnxruntime providers: ['CPUExecutionProvider']
說明PaddleHub已經配置好了,執行過程中預訓練模型會被下載到E盤。
Diffsinger模型推理
DiffSinger是一個基於擴散機率模型的 SVS 聲學模型,一個引數化的馬爾科夫鏈,它可以根據樂譜的條件,迭代地將噪聲轉換為旋律譜。
推理之前,安裝推理加速模組:
pip install onnxruntime
透過隱式最佳化變異約束,DiffSinger 可以被穩定地訓練併產生真實的輸出。
這裡透過內建的singing_voice_synthesis方法:
singing_voice_synthesis(inputs: Dict[str, str],sample_num: int = 1,
save_audio: bool = True,save_dir: str = 'outputs')
引數含義是:
1. inputs (Dict[str, str]): 輸入歌詞資料。
2. sample_num (int): 生成音訊的數量。
3. save_audio (bool): 是否儲存音訊檔案。
4.save_dir (str): 儲存處理結果的檔案目錄。
在官方文件中:
https://github.com/MoonInTheRiver/DiffSinger/blob/master/docs/README-SVS-opencpop-cascade.md
作者給出了一段示例程式碼:
results = module.singing_voice_synthesis(
inputs={
'text': '小酒窩長睫毛AP是你最美的記號',
'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4',
'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340',
'input_type': 'word'
},
sample_num=1,
save_audio=True,
save_dir='outputs'
)
# text:歌詞文字
# notes:音名
# notes_duration:音符時值(時長)
# input_type:輸入型別(文字)
示例中使用的是林俊杰的歌曲《小酒窩》。
這裡,最核心的邏輯是inputs的notes引數,也就是樂譜中的音名,而notes_duration引數則是該音名的持續時長。
音名對照參照:
1 A0 6L4 A2 大字2組 27.5
2 A#0 #6L4 A#2 29.1353
3 B0 7L4 B2 30.8677
4 1 C1 1L3 C1 大字1組 32.7032
5 2 C#1 #1L3 C#1 34.6479
6 3 D1 2L3 D1 36.7081
7 4 D#1 #2L3 D#1 38.8909
8 5 E1 3L3 E1 41.2035
9 6 F1 4L3 F1 43.6536
10 7 F#1 #4L3 F#1 46.2493
11 8 G1 5L3 G1 48.9995
12 9 G#1 #5L3 G#1 51.913
13 10 A1 6L3 A1 55
14 11 A#1 #6L3 A#1 58.2705
15 12 B1 7L3 B1 61.7354
16 13 C2 1L2 C 大字組 65.4064
17 14 C#2 #1L2 #C 69.2957
18 15 D2 2L2 D 73.4162
19 16 D#2 #2L2 #D 77.7817
20 17 E2 3L2 E 82.4069
21 18 F2 4L2 F 87.3071
22 19 F#2 #4L2 #F 92.4986
23 20 G2 5L2 G 97.9989
24 21 G#2 #5L2 #G 103.826
25 22 A2 6L2 A 110
26 23 A#2 #6L2 #A 116.541
27 24 B2 7L2 B 123.471
28 25 C3 1L1 c 小字組 130.813
29 26 C#3 #1L1 #c 138.591
30 27 D3 2L1 d 146.832
31 28 D#3 #2L1 #d 155.563
32 29 E3 3L1 e 164.814
33 30 F3 4L1 f 174.614
34 31 F#3 #4L1 #f 184.997
35 32 G3 5L1 g 195.998
36 33 G#3 #5L1 #g 207.652
37 34 A3 6L1 a 220
38 35 A#3 #6L1 #a 233.082
39 36 B3 7L1 b 246.942
40 37 C4 1 c1 小字1組(中央C) 261.626
41 38 C#4 #1 c#1 277.183
42 39 D4 2 d1 293.665
43 40 D#4 #2 d#1 311.127
44 41 E4 3 e1 329.628
45 42 F4 4 f1 349.228
46 43 F#4 #4 f#1 369.994
47 44 G4 5 g1 391.995
48 45 G#4 #5 g#1 415.305
49 46 A4 6 a1 (國際標準A音) 440
50 47 A#4 #6 a#1 466.164
51 48 B4 7 b1 493.883
52 49 C5 1H1 c2 小字2組 523.251
53 50 C#5 #1H1 c#2 554.365
54 51 D5 2H1 d2 587.33
55 52 D#5 #2H1 d#2 622.254
56 53 E5 3H1 e2 659.255
57 54 F5 4H1 f2 698.456
58 55 F#5 #4H1 f#2 739.989
59 56 G5 5H1 g2 783.991
60 57 G#5 #5H1 g#2 830.609
61 58 A5 6H1 a2 880
62 59 A#5 #6H1 a#2 932.328
63 60 B5 7H1 b2 987.767
64 61 C6 1H2 c3 小字3組 1046.5
65 62 C#6 #1H2 c#3 1108.73
66 63 D6 2H2 d3 1174.66
67 64 D#6 #2H2 d#3 1244.51
68 65 E6 3H2 e3 1318.51
69 66 F6 4H2 f3 1396.91
70 67 F#6 #4H2 f#3 1479.98
71 68 G6 5H2 g3 1567.98
72 69 G#6 #5H2 g#3 1661.22
73 70 A6 6H2 a3 1760
74 71 A#6 #6H2 a#3 1864.66
75 72 B6 7H2 b3 1975.53
76 73 C7 1H3 c4 小字4組 2093
77 74 C#7 #1H3 c#4 2217.46
78 75 D7 2H3 d4 2349.32
79 76 D#7 #2H3 d#4 2489.02
80 77 E7 3H3 e4 2637.02
81 78 F7 4H3 f4 2793.83
82 79 F#7 #4H3 f#4 2959.96
83 80 G7 5H3 g4 3135.96
84 81 G#7 #5H3 g#4 3322.44
85 82 A7 6H3 a4 3520
86 83 A#7 #6H3 a#4 3729.31
87 84 B7 7H3 b4 3951.07
88 C8 1H4 c5 小字5組 4186.01
說白了,就是按照簡譜的鍵位轉換為音名。
以旋律相對簡單的《學貓叫》為例子:
C’ D’ E’ G C’ E’ E’ D’ C’D’ G’ G’G’ G’ C’ B C’ C’ C’ C’ C’ B C’ B C’ B A G
我們一起學貓叫 一起喵喵喵喵喵 在你面前撒個嬌 哎呦喵喵喵喵喵
F C Dm G
G G A A A A A G E G E G D’ C’ G E’ E’ E’ F’ G’ C’ C’ E’ D’
我的心臟砰砰跳 迷戀上你的壞笑 你不說愛我 我就喵喵喵
它的前七個音符分別對應CDEGCEE,對應程式碼:
results = module.singing_voice_synthesis(
inputs={
'text': '我們一起學貓叫',
'notes': 'D#3 | E3 | E5 | G4 | C5 | E5 | E5',
'notes_duration': '0.407140 | 0.307140 | 0.307140 | 0.307140 | 0.307140 | 0.307140 | 0.307140 ' ,
'input_type': 'word'
},
sample_num=1,
save_audio=True,
save_dir='./outputs'
)
這裡推理的音訊儲存在outputs資料夾內。
結語
利用DiffSinger我們可以簡單的將歌詞和旋律透過程式碼轉換為實體歌聲,但需要注意的是該專案只是輸出了清唱部分,真正的音樂作品還需要新增伴奏以及調音等操作,欲知後事如何,且聽下回分解,另外,魔改版本的《學貓叫》已經上傳到Youtube(B站):劉悅的技術部落格,歡迎品鑑。