AI歌姬,C位出道,基於PaddleHub/Diffsinger實現音訊歌聲合成操作(Python3.10)

劉悅的技術部落格發表於2023-11-14

懂樂理的音樂專業人士可以透過寫樂譜並透過樂器演奏來展示他們的音樂創意和構思,但不識譜的素人如果也想跨界玩兒音樂,那麼門檻兒就有點高了。但隨著人工智慧技術的快速迭代,現在任何一個人都可以成為“創作型歌手”,即自主創作並且讓AI進行演唱,極大地降低了音樂製作的門檻。

本次我們基於PaddleHub和Diffsinger實現音訊歌聲合成操作,魔改歌曲《學貓叫》。

配置PaddleHub

首先確保本地就已經安裝好了百度的PaddlePaddle深度學習框架,隨後輸入命令安裝PaddleHub庫:

pip install paddlehub@2.4.0

PaddleHub是基於PaddlePaddle生態下的預訓練模型,旨在為開發者提供豐富的、高質量的、直接可用的預訓練模型,也就是說語音模型我們不需要單獨訓練,直接使用paddlehub提供的模型進行推理即可,注意這裡版本為最新的2.4.0。

安裝成功之後,配置環境變數:

由於PaddleHub會把音色模型下載到本地,如果不配置環境變數,預設會下載到系統的C盤,所以這裡單獨設定為E盤。

隨後需要將Win11的cmd編碼設定為utf-8:

首先找到設定頁面  
搜尋地區,並點選更改國家或地區  
選擇管理語言設定  
選擇更改系統區域設定  
勾選Beta版: 使用Unicode UTF-8 提供全球語言支援,重啟生效。

如果不設定utf-8編碼,PaddleHub會因為亂碼問題報錯。

接著安裝diffsinger:

hub install diffsinger

隨後在終端執行程式碼:

import paddlehub as hub  
  
module = hub.Module(name="diffsinger")

這裡指定diffsinger的模型庫,程式返回:

C:\Program Files\Python310\lib\site-packages\_distutils_hack\__init__.py:33: UserWarning: Setuptools is replacing distutils.  
  warnings.warn("Setuptools is replacing distutils.")  
| Hparams chains:  ['configs/config_base.yaml', 'configs/tts/base.yaml', 'configs/tts/fs2.yaml', 'configs/tts/base_zh.yaml', 'configs/singing/base.yaml', 'usr\\configs\\base.yaml', 'usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml', 'model\\config.yaml']  
| Hparams:   
K_step: 100, accumulate_grad_batches: 1, audio_num_mel_bins: 80, audio_sample_rate: 24000, base_config: ['usr/configs/popcs_ds_beta6.yaml', 'usr/configs/midi/cascade/opencs/opencpop_statis.yaml'],   
binarization_args: {'shuffle': False, 'with_txt': True, 'with_wav': True, 'with_align': True, 'with_spk_embed': False, 'with_f0': True, 'with_f0cwt': True}, binarizer_cls: data_gen.singing.binarize.OpencpopBinarizer, binary_data_dir: data/binary/opencpop-midi-dp, check_val_every_n_epoch: 10, clip_grad_norm: 1,   
content_cond_steps: [], cwt_add_f0_loss: False, cwt_hidden_size: 128, cwt_layers: 2, cwt_loss: l1,   
cwt_std_scale: 0.8, datasets: ['popcs'], debug: False, dec_ffn_kernel_size: 9, dec_layers: 4,   
decay_steps: 50000, decoder_type: fft, dict_dir: , diff_decoder_type: wavenet, diff_loss_type: l1,   
dilation_cycle_length: 4, dropout: 0.1, ds_workers: 4, dur_enc_hidden_stride_kernel: ['0,2,3', '0,2,3', '0,1,3'], dur_loss: mse,   
dur_predictor_kernel: 3, dur_predictor_layers: 5, enc_ffn_kernel_size: 9, enc_layers: 4, encoder_K: 8,   
encoder_type: fft, endless_ds: True, ffn_act: gelu, ffn_padding: SAME, fft_size: 512,   
fmax: 12000, fmin: 30, fs2_ckpt: , gaussian_start: True, gen_dir_name: ,   
gen_tgt_spk_id: -1, hidden_size: 256, hop_size: 128, infer: False, keep_bins: 80,   
lambda_commit: 0.25, lambda_energy: 0.0, lambda_f0: 0.0, lambda_ph_dur: 1.0, lambda_sent_dur: 1.0,   
lambda_uv: 0.0, lambda_word_dur: 1.0, load_ckpt: , log_interval: 100, loud_norm: False,   
lr: 0.001, max_beta: 0.06, max_epochs: 1000, max_eval_sentences: 1, max_eval_tokens: 60000,   
max_frames: 8000, max_input_tokens: 1550, max_sentences: 48, max_tokens: 40000, max_updates: 160000,   
mel_loss: ssim:0.5|l1:0.5, mel_vmax: 1.5, mel_vmin: -6.0, min_level_db: -120, norm_type: gn,   
num_ckpt_keep: 3, num_heads: 2, num_sanity_val_steps: 1, num_spk: 1, num_test_samples: 0,  
num_valid_plots: 10, optimizer_adam_beta1: 0.9, optimizer_adam_beta2: 0.98, out_wav_norm: False, pe_ckpt: checkpoints/0102_xiaoma_pe,  
pe_enable: True, pitch_ar: False, pitch_enc_hidden_stride_kernel: ['0,2,5', '0,2,5', '0,2,5'], pitch_extractor: parselmouth, pitch_loss: l1,  
pitch_norm: log, pitch_type: frame, pre_align_args: {'use_tone': False, 'forced_align': 'mfa', 'use_sox': True, 'txt_processor': 'zh_g2pM', 'allow_no_txt': False, 'denoise': False}, pre_align_cls: data_gen.singing.pre_align.SingingPreAlign, predictor_dropout: 0.5,  
predictor_grad: 0.1, predictor_hidden: -1, predictor_kernel: 5, predictor_layers: 5, prenet_dropout: 0.5,  
prenet_hidden_size: 256, pretrain_fs_ckpt: , processed_data_dir: data/processed/popcs, profile_infer: False, raw_data_dir: data/raw/popcs,  
ref_norm_layer: bn, rel_pos: True, reset_phone_dict: True, residual_channels: 256, residual_layers: 20,  
save_best: False, save_ckpt: True, save_codes: ['configs', 'modules', 'tasks', 'utils', 'usr'], save_f0: True, save_gt: False,  
schedule_type: linear, seed: 1234, sort_by_len: True, spec_max: [-0.79453, -0.81116, -0.61631, -0.30679, -0.13863, -0.050652, -0.11563, -0.10679, -0.091068, -0.062174, -0.075302, -0.072217, -0.063815, -0.073299, 0.007361, -0.072508, -0.050234, -0.16534, -0.26928, -0.20782, -0.20823, -0.11702, -0.070128, -0.065868, -0.012675, 0.0015121, -0.089902, -0.21392, -0.23789, -0.28922, -0.30405, -0.23029, -0.22088, -0.21542, -0.29367, -0.30137, -0.38281, -0.4359, -0.28681, -0.46855, -0.57485, -0.47022, -0.54266, -0.44848, -0.6412, -0.687, -0.6486, -0.76436, -0.49971, -0.71068, -0.69724, -0.61487, -0.55843, -0.69773, -0.57502, -0.70919, -0.82431, -0.84213, -0.90431, -0.8284, -0.77945, -0.82758, -0.87699, -1.0532, -1.0766, -1.1198, -1.0185, -0.98983, -1.0001, -1.0756, -1.0024, -1.0304, -1.0579, -1.0188, -1.05, -1.0842, -1.0923, -1.1223, -1.2381, -1.6467], spec_min: [-6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0],  
spk_cond_steps: [], stop_token_weight: 5.0, task_cls: usr.diffsinger_task.DiffSingerMIDITask, test_ids: [], test_input_dir: ,  
test_num: 0, test_prefixes: ['popcs-說散就散', 'popcs-隱形的翅膀'], test_set_name: test, timesteps: 100, train_set_name: train,  
use_denoise: False, use_energy_embed: False, use_gt_dur: False, use_gt_f0: False, use_midi: True,  
use_nsf: True, use_pitch_embed: False, use_pos_embed: True, use_spk_embed: False, use_spk_id: False,  
use_split_spk_id: False, use_uv: True, use_var_enc: False, val_check_interval: 2000, valid_num: 0,  
valid_set_name: valid, validate: False, vocoder: vocoders.hifigan.HifiGAN, vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128, warmup_updates: 2000,  
wav2spec_eps: 1e-6, weight_decay: 0, win_size: 512, work_dir: ,  
Using these as onnxruntime providers: ['CPUExecutionProvider']

說明PaddleHub已經配置好了,執行過程中預訓練模型會被下載到E盤。

Diffsinger模型推理

DiffSinger是一個基於擴散機率模型的 SVS 聲學模型,一個引數化的馬爾科夫鏈,它可以根據樂譜的條件,迭代地將噪聲轉換為旋律譜。

推理之前,安裝推理加速模組:

pip install onnxruntime

透過隱式最佳化變異約束,DiffSinger 可以被穩定地訓練併產生真實的輸出。

這裡透過內建的singing_voice_synthesis方法:

singing_voice_synthesis(inputs: Dict[str, str],sample_num: int = 1,  
save_audio: bool = True,save_dir: str = 'outputs')

引數含義是:

1. inputs (Dict[str, str]): 輸入歌詞資料。  
2. sample_num (int): 生成音訊的數量。  
3. save_audio (bool): 是否儲存音訊檔案。  
4.save_dir (str): 儲存處理結果的檔案目錄。

在官方文件中:

https://github.com/MoonInTheRiver/DiffSinger/blob/master/docs/README-SVS-opencpop-cascade.md

作者給出了一段示例程式碼:

results = module.singing_voice_synthesis(  
  inputs={  
    'text': '小酒窩長睫毛AP是你最美的記號',  
    'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4',  
    'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340',  
    'input_type': 'word'  
  },  
  sample_num=1,  
  save_audio=True,  
  save_dir='outputs'  
)  
# text:歌詞文字  
# notes:音名  
# notes_duration:音符時值(時長)  
# input_type:輸入型別(文字)

示例中使用的是林俊杰的歌曲《小酒窩》。

這裡,最核心的邏輯是inputs的notes引數,也就是樂譜中的音名,而notes_duration引數則是該音名的持續時長。

音名對照參照:

1                   A0          6L4          A2          大字2組        27.5  
 2                   A#0        #6L4        A#2                          29.1353  
 3                   B0          7L4          B2                            30.8677  
  
 4        1         C1          1L3          C1          大字1組        32.7032  
 5        2         C#1        #1L3        C#1                         34.6479  
 6        3         D1          2L3          D1                           36.7081  
 7        4         D#1        #2L3        D#1                        38.8909  
 8        5         E1          3L3           E1                           41.2035  
 9        6         F1          4L3           F1                           43.6536  
10       7         F#1        #4L3         F#1                         46.2493  
11       8         G1          5L3          G1                           48.9995  
12       9         G#1        #5L3        G#1                         51.913  
13       10        A1          6L3           A1                           55   
14       11        A#1       #6L3          A#1                        58.2705  
15       12        B1          7L3           B1                           61.7354    
  
16       13        C2         1L2            C          大字組         65.4064  
17       14        C#2       #1L2         #C                          69.2957  
18       15        D2         2L2            D                           73.4162  
19       16        D#2       #2L2         #D                         77.7817  
20       17        E2         3L2            E                           82.4069  
21       18        F2         4L2            F                            87.3071  
22       19        F#2       #4L2         #F                          92.4986  
23       20        G2         5L2           G                           97.9989  
24       21        G#2      #5L2         #G                         103.826  
25       22        A2         6L2           A                           110  
26       23        A#2       #6L2        #A                          116.541  
27       24        B2         7L2           B                           123.471  
  
28       25        C3         1L1           c         小字組          130.813  
29       26        C#3      #1L1         #c                          138.591  
30       27        D3         2L1           d                           146.832  
31       28        D#3      #2L1         #d                         155.563  
32       29        E3          3L1          e                           164.814  
33       30        F3          4L1          f                            174.614  
34       31        F#3       #4L1        #f                           184.997  
35       32        G3         5L1           g                           195.998  
36       33        G#3      #5L1         #g                          207.652  
37       34        A3          6L1          a                            220  
38       35        A#3       #6L1        #a                          233.082  
39       36        B3         7L1           b                            246.942  
  
40       37        C4          1             c1     小字1組(中央C)   261.626  
41       38        C#4       #1           c#1                           277.183  
42       39        D4         2              d1                            293.665  
43       40        D#4       #2           d#1                          311.127  
44       41        E4         3               e1                           329.628  
45       42        F4         4               f1                            349.228  
46       43        F#4       #4            f#1                          369.994  
47       44        G4         5              g1                           391.995  
48       45        G#4      #5            g#1                         415.305  
49       46        A4         6              a1     (國際標準A音)    440  
50       47        A#4      #6            a#1                          466.164  
51       48        B4         7              b1                           493.883   
  
52       49        C5        1H1           c2       小字2組          523.251  
53       50        C#5     #1H1          c#2                        554.365  
54       51        D5        2H1           d2                          587.33  
55       52        D#5     #2H1         d#2                        622.254  
56       53        E5        3H1           e2                          659.255  
57       54        F5        4H1           f2                           698.456  
58       55        F#5      #4H1         f#2                        739.989  
59       56        G5        5H1          g2                          783.991  
60       57        G#5      #5H1        g#2                       830.609  
61       58        A5         6H1          a2                         880  
62       59        A#5      #6H1        a#2                       932.328  
63       60        B5         7H1          b2                        987.767  
  
64       61        C6         1H2          c3       小字3組      1046.5  
65       62        C#6      #1H2        c#3                      1108.73  
66       63        D6         2H2          d3                        1174.66   
67       64        D#6      #2H2        d#3                      1244.51  
68       65        E6         3H2          e3                        1318.51  
69       66        F6         4H2           f3                        1396.91  
70       67        F#6      #4H2         f#3                      1479.98  
71       68        G6         5H2          g3                       1567.98  
72       69        G#6      #5H2         g#3                    1661.22  
73       70        A6         6H2          a3                       1760  
74       71        A#6      #6H2         a#3                     1864.66  
75       72        B6         7H2           b3                      1975.53  
  
76       73        C7         1H3           c4       小字4組     2093  
77       74        C#7      #1H3         c#4                     2217.46  
78       75        D7          2H3          d4                      2349.32  
79       76        D#7      #2H3         d#4                    2489.02  
80       77        E7          3H3          e4                      2637.02  
81       78        F7          4H3          f4                       2793.83  
82       79        F#7       #4H3         f#4                    2959.96  
83       80        G7          5H3          g4                     3135.96  
84       81        G#7      #5H3         g#4                    3322.44  
85       82        A7          6H3          a4                      3520  
86       83        A#7      #6H3         a#4                    3729.31  
87       84        B7          7H3          b4                      3951.07  
  
88                   C8         1H4           c5     小字5組       4186.01

說白了,就是按照簡譜的鍵位轉換為音名。

以旋律相對簡單的《學貓叫》為例子:

C’ D’ E’ G C’ E’ E’ D’ C’D’ G’ G’G’ G’ C’ B C’ C’ C’ C’ C’ B C’ B C’ B A G  
我們一起學貓叫 一起喵喵喵喵喵 在你面前撒個嬌 哎呦喵喵喵喵喵  
 F C Dm G  
G G A A A A A G E G E G D’ C’ G E’ E’ E’ F’ G’ C’ C’ E’ D’  
我的心臟砰砰跳 迷戀上你的壞笑 你不說愛我 我就喵喵喵

它的前七個音符分別對應CDEGCEE,對應程式碼:

results = module.singing_voice_synthesis(  
  inputs={  
    'text': '我們一起學貓叫',  
    'notes': 'D#3 | E3 | E5 | G4 | C5 | E5 | E5',  
    'notes_duration': '0.407140 | 0.307140 | 0.307140 | 0.307140 | 0.307140  | 0.307140 | 0.307140 '  ,  
    'input_type': 'word'  
  },  
  sample_num=1,  
  save_audio=True,  
  save_dir='./outputs'  
)

這裡推理的音訊儲存在outputs資料夾內。

結語

利用DiffSinger我們可以簡單的將歌詞和旋律透過程式碼轉換為實體歌聲,但需要注意的是該專案只是輸出了清唱部分,真正的音樂作品還需要新增伴奏以及調音等操作,欲知後事如何,且聽下回分解,另外,魔改版本的《學貓叫》已經上傳到Youtube(B站):劉悅的技術部落格,歡迎品鑑。

相關文章