(翻譯)2016美國數學建模MCM C題(大資料)翻譯:優質基金挑戰
PROBLEM C: The Goodgrant Challenge
The Goodgrant Foundation is a charitable organization that wants to help improve educational performance of undergraduates attending colleges and universities in the United States. To do this, the foundation intends to donate a total of $100,000,000 (US100 million) to an appropriate group of schools per year, for five years, starting July 2016. In doing so, they do not want to duplicate the investments and focus of other large grant organizations such as the Gates Foundation and Lumina Foundation.
Your team has been asked by the Goodgrant Foundation to develop a model to determine an optimal investment strategy that identifies the schools, the investment amount per school, the return on that investment, and the time duration that the organization’s money should be provided to have the highest likelihood of producing a strong positive effect on student performance. This strategy should contain a 1 to N optimized and prioritized candidate list of schools you are recommending for investment based on each candidate school’s demonstrated potential for effective use of private funding, and an estimated return on investment (ROI) defined in a manner appropriate for a charitable organization such as the Goodgrant Foundation.
To assist your effort, the attached data file (ProblemCDATA.zip) contains information extracted from the U.S. National Center on Education Statistics (www.nces.ed.gov/ipeds), which maintains an extensive database of survey information on nearly all post-secondary colleges and universities in the United States, and the College Scorecard data set (https://collegescorecard.ed.gov) which contains various institutional performance data. Your model and subsequent strategy must be based on some meaningful and defendable subset of these two data sets.
In addition to the required one-page summary for your MCM submission, your report must include a letter to the Chief Financial Officer (CFO) of the Goodgrant Foundation, Mr. Alpha Chiang, that describes the optimal investment strategy, your modeling approach and major results, and a brief discussion of your proposed concept of a return-on-investment (ROI) that the Goodgrant Foundation should adopt for assessing the 2016 donation(s) and future philanthropic educational investments within the United States. This letter should be no more than two pages in length.
Note: When submitting your final electronic solution DO NOT include any database files. The only thing that should be submitted is your electronic (Word or PDF) solution.
The ProblemCDATA.zip data file contains:
Problem C - IPEDS UID for Potential Candidate Schools.xlsx
Problem C - Most Recent Cohorts Data (Scorecard Elements).xlsx
Problem C - CollegeScorecardDataDictionary-09-08-2015.xlsx
IPEDS Variables for Data Selection.pdf
You can download the data (ProblemCDATA.zip) on the following websites:
http://www.comap-math.com/mcm/ProblemCDATA.zip
http://www.mathismore.net/mcm/ProblemCDATA.zip
http://www.mathportals.com/mcm/ProblemCDATA.zip
http://www.immchallenge.org/mcm/ProblemCDATA.zip
C: 該Goodgrant基金會是一個慈善組織,希望有助於提高大學生就讀高校在美國的教育業績。要做到這一點,該基金會擬共$ 100,000,000個(US100萬美元)捐贈給每年學校的相應組,為五年,7月開始到2016年這樣做,他們不希望重複投資和其他重點大型授予組織如蓋茨基金會和Lumina的基礎。
您的團隊已要求由Goodgrant基金會建立一個模型,以確定最佳的投資策略,確定了學校,每所學校的投資金額,對投資回報率,以及持續時間,該組織的資金應提供有最高可能產生對學生的表現有很強的正效應。該戰略應包括學校,你是根據每個候選學校的證明潛力有效地利用私人資金,建議投資適當的方式定義的1到N優化並優先候選名單,和投資回報(ROI)的預計收益慈善組織如Goodgrant基金會。
為了幫助你的努力,附加的資料檔案(ProblemCDATA.zip)包含來自美國國家中心教育統計(www.nces.ed.gov/ipeds),它在幾乎所有的後擁有大量的調查資訊資料庫中提取資訊二級學院和大學在美國,與大學記分卡的資料集(https://collegescorecard.ed.gov),其中包括各種機構的效能資料。您的模型和隨後的戰略必須建立在這兩個資料集的一些有意義的,可防禦的子集。
除了必需的單頁摘要您的MCM提交,你的報告必須包括信Goodgrant基金,阿爾法蔣介石先生,介紹了最優投資策略的首席財務官(CFO),您的建模方法和主要結果,和你提出了一個回報率的投資回報率(ROI)的概念進行了簡要的討論Goodgrant基金會應該採取評估的2016年捐款(S)和未來的慈善教育投資在美國境內的。這封信應不大於長兩頁多。
注意:當您提交最終的電子解決方案不包含任何資料庫檔案。應提交的唯一的事情就是你的電子(Word或PDF)的解決方案。
該ProblemCDATA.zip資料檔案包含:
·題C - IPEDS UID為潛在的候選Schools.xlsx
·題C - 最新同夥資料(記分卡元素)的.xlsx
·題C - CollegeScorecardDataDictionary-09-08-2015.xlsx
·IPEDS的資料Selection.pdf變數
相關文章
- (翻譯)2016美國數學建模MCM F題(政策)翻譯:難民移民政策建模
- (翻譯)2016美國數學建模MCM B題(離散型)翻譯:Space Junk太空垃圾
- (翻譯)2016美國數學建模MCM A題(連續型)翻譯:A Hot Bath 一個熱水澡BAT
- (翻譯)2016美國數學建模MCM E題(環境)翻譯:我們朝向一個乾旱的星球?
- [轉載]2016美國數學建模MCM F題(政策)翻譯:難民移入政策建模
- (翻譯)2016美國數學建模MCM D題 翻譯:測量協會資訊網路的演變和影響
- 《資料科學實戰》翻譯質量有問題,存在嚴重錯誤資料科學
- 微軟提出新型通用神經機器翻譯方法,挑戰低資源語言翻譯問題微軟
- 一道英文數學題的翻譯
- Datawhale AI夏令營-機器翻譯挑戰賽AI
- [翻譯] 宣佈成立 PHP 基金會PHP
- 監管機器翻譯質量?且看阿里如何搭建翻譯質量評估模型阿里模型
- 翻譯
- Yurii談翻譯(五)怎樣翻譯更地道:so…that…的翻譯
- 如何完成中文翻譯日文線上翻譯
- Yurii談翻譯(四)怎樣翻譯更地道:翻譯如鋪路
- Yurii談翻譯(九)怎樣翻譯更地道:冠詞a的翻譯
- Yurii談翻譯(十)怎樣翻譯更地道:最高階的翻譯
- 翻譯的未來:翻譯機器和譯後編譯編譯
- 【翻譯】c++類中“空成員”的優化C++優化
- 資料庫第九周翻譯資料庫
- Ubuntu安裝劃詞翻譯軟體Goldendict 單詞翻譯 句子翻譯UbuntuGo
- Yurii談翻譯(六)怎樣翻譯更地道:“as somebody said…”的翻譯AI
- Yurii談翻譯(十三)怎樣翻譯更地道:It is…that…句型諺語的翻譯
- Yurii談翻譯(十四)怎樣翻譯更地道:否定句的翻譯
- 谷歌揭祕自家翻譯系統:如何利用AI技術提高翻譯質量谷歌AI
- 蝴蝶書-task2: 文字推理、摘要、糾錯 transformers實現翻譯 OpenAI翻譯 PyDeepLX翻譯 DeepLpro翻譯ORMOpenAI
- 優質免費的 5 款翻譯 API 介面推薦API
- A3C論文翻譯
- Nginx翻譯Nginx
- [翻譯] TransitionKit
- 翻譯篇
- OllDbg翻譯LLDB
- MySQl引數管理( 部分翻譯)MySql
- OpenCV翻譯專案總結二——Mat翻譯OpenCV
- 神經機器翻譯實戰
- dumping_oracle_blocks翻譯(一)個人翻譯,學習總結用OracleBloC
- Perl資料型別安全研究【翻譯】資料型別