POJ 3253-Fence Repair(哈夫曼樹-最小值優先佇列)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 44152 | Accepted: 14405 |
Description
Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤ 50,000) units. He then purchases a single long board just long enough to saw into the N planks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the "kerf", the extra length lost to sawdust when a sawcut is made; you should ignore it, too.
FJ sadly realizes that he doesn't own a saw with which to cut the wood, so he mosies over to Farmer Don's Farm with this long board and politely asks if he may borrow a saw.
Farmer Don, a closet capitalist, doesn't lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.
Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will result in different charges since the resulting intermediate planks are of different lengths.
Input
Lines 2..N+1: Each line contains a single integer describing the length of a needed plank
Output
Sample Input
3 8 5 8
Sample Output
34
Hint
The original board measures 8+5+8=21. The first cut will cost 21, and should be used to cut the board into pieces measuring 13 and 8. The second cut will cost 13, and should be used to cut the 13 into 8 and 5. This would cost 21+13=34. If the 21 was cut into 16 and 5 instead, the second cut would cost 16 for a total of 37 (which is more than 34).
Source
題目意思:
解題思路:
priority_queue呼叫 STL裡面的 make_heap(), pop_heap(), push_heap() 演算法實現,也算是堆的另外一種形式。先寫一個用 STL 裡面堆演算法實現的與真正的STL裡面的 priority_queue用法相似的priority_queue, 以加深對 priority_queue 的理解
#include
<iostream> #include
<algorithm> #include
<vector> using namespace std; class priority_queue { private : vector< int >
data; public : void push(
int t
){ data.push_back(t);
push_heap(
data.begin(), data.end()); } void pop(){ pop_heap(
data.begin(), data.end() ); data.pop_back(); } int top()
{ return data.front();
} int size()
{ return data.size();
} bool empty()
{ return data.empty();
} }; int main() { priority_queue
test; test.push(
3 ); test.push(
5 ); test.push(
2 ); test.push(
4 ); while (
!test.empty() ){ cout
<< test.top() << endl; test.pop();
} return 0; } |
priority_queue 對於基本型別的使用方法相對簡單。他的模板宣告帶有三個引數:
priority_queue<Type, Container, Functional>
其中Type 為資料型別, Container 為儲存資料的容器,Functional 為元素比較方式。
Container 必須是用陣列實現的容器,比如 vector, deque 但不能用 list.
STL裡面預設用的是 vector. 比較方式預設用 operator< , 所以如果你把後面倆個引數預設的話,
優先佇列就是大頂堆,隊頭元素最大。
#include
<iostream> #include
<queue> using namespace std; int main(){ priority_queue< int >
q; for (
int i=
0; i< 10; ++i ) q.push( rand ()
); while (
!q.empty() ){ cout
<< q.top() << endl; q.pop(); } getchar (); return 0; } |
STL裡面定義了一個仿函式 greater<>,對於基本型別可以用這個仿函式宣告小頂堆
#include
<iostream> #include
<queue> using namespace std; int main(){ priority_queue< int ,
vector< int >,
greater< int >
> q; for (
int i=
0; i< 10; ++i ) q.push( rand ()
); while (
!q.empty() ){ cout
<< q.top() << endl; q.pop(); } getchar (); return 0; } |
#include
<iostream> #include
<queue> using namespace std; struct Node{ int x,
y; Node(
int a=
0, int b=
0 ): x(a),
y(b) {} }; bool operator<(
Node a, Node b ){ if (
a.x== b.x ) return a.y>
b.y; return a.x>
b.x; } int main(){ priority_queue<Node>
q; for (
int i=
0; i< 10; ++i ) q.push(
Node( rand (),
rand ()
) ); while (
!q.empty() ){ cout
<< q.top().x << '
' <<
q.top().y << endl; q.pop(); } getchar (); return 0; } |
但此時不能像基本型別這樣宣告
priority_queue<Node, vector<Node>, greater<Node> >;
原因是 greater<Node> 沒有定義,如果想用這種方法定義則可以按如下方式:
#include
<iostream> #include
<queue> using namespace std; struct Node{ int x,
y; Node(
int a=
0, int b=
0 ): x(a),
y(b) {} }; struct cmp{ bool operator()
( Node a, Node b ){ if (
a.x== b.x ) return a.y>
b.y; return a.x>
b.x; } }; int main(){ priority_queue<Node,
vector<Node>, cmp> q; for (
int i=
0; i< 10; ++i ) q.push(
Node( rand (),
rand ()
) ); while (
!q.empty() ){ cout
<< q.top().x << '
' <<
q.top().y << endl; q.pop(); } getchar (); return 0; }
//以上程式碼實現的是一個小頂堆 |
轉載:http://blog.chinaunix.net/space.php?uid=533684&do=blog&cuid=2615612
ps:如果過載operator > 可直接使用priority_queue<Node,vector<Node>,greater<Node>>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n;
while(cin>>n)
{
long long ans=0,a,b;//結果可能長達長整型
int s;
priority_queue<int,vector<int>,greater<int> >que;//最小值優先
for(int i=0; i<n; ++i)
{
cin>>s;//讀取初值
que.push(s);
}
if(que.size()==1)//特判只有1個元素的情況
ans=que.top();
else
while(que.size()>1)
{
a=que.top();//取出最小的兩個值,然後將其出棧
que.pop();
b=que.top();
que.pop();
ans+=(a+b);
que.push(a+b);//注意是兩值之和入棧而不是ans
}
cout<<ans<<endl;
}
return 0;
}
/*
3
8
5
8
*/
相關文章
- POJ 3253Fence Repair(哈夫曼&優先佇列)AI佇列
- 合併果子(優先佇列 +或者+哈夫曼)佇列
- POJ 3253 Fence Repair 優先佇列AI佇列
- 哈夫曼樹
- 【筆記】哈夫曼樹筆記
- Java 樹結構實際應用 二(哈夫曼樹和哈夫曼編碼)Java
- 樹和二叉樹的基本運算實現-哈夫曼樹/哈夫曼編碼二叉樹
- Safe Or Unsafe(hdu2527)哈弗曼VS優先佇列佇列
- 最優二叉樹(哈夫曼樹)Java實現二叉樹Java
- 哈夫曼樹學習筆記筆記
- 6.6 哈夫曼樹及其應用
- 資料結構與演算法——赫夫曼樹(哈夫曼樹)資料結構演算法
- 哈夫曼二叉樹原始碼 (轉)二叉樹原始碼
- 重學資料結構之哈夫曼樹資料結構
- 哈夫曼樹及其應用(檔案壓縮)
- POJ 1724 ROADS(優先佇列+spfa)佇列
- POJ2431 Expedition (優先佇列)佇列
- POJ 2051(最小堆/優先佇列)佇列
- 資料結構-哈夫曼樹(python實現)資料結構Python
- 資料結構與演算法:哈夫曼樹資料結構演算法
- 【資料結構X.11】程式碼實現 哈夫曼樹的建立,建立,構造,實現哈夫曼編碼資料結構
- 一本正經的聊資料結構(6):最優二叉樹 —— 哈夫曼樹資料結構二叉樹
- [java]java實現哈夫曼編碼Java
- 【資料結構】哈夫曼樹的建立與基礎應用資料結構
- Sunscreen POJ - 3614(防曬油) 貪心-優先佇列佇列
- POJ 2442-Sequence(優先佇列-m組n個數每組取一個求n個最小值)佇列
- PHP優先佇列PHP佇列
- 堆--優先佇列佇列
- 優先佇列 (轉)佇列
- 高階資料結構---赫(哈)夫曼樹及java程式碼實現資料結構Java
- 哈夫曼編碼 —— Lisp 與 Python 實現LispPython
- 樹(4)--赫夫曼樹及其應用
- 淺談優先佇列佇列
- STL 優先佇列 用法佇列
- 堆與優先佇列佇列
- 堆和優先佇列佇列
- php二叉樹與赫夫曼樹PHP二叉樹
- 優先佇列的學習記錄--例題:Expedition(POJ2431)佇列