POJ 1113-Wall(凸包-Graham演算法)
Wall
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 35509 | Accepted: 12107 |
Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall
towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources
to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build
the wall.
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.
The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.
The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to
the castle.
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers
are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.
Sample Input
9 100 200 400 300 400 300 300 400 300 400 400 500 400 500 200 350 200 200 200
Sample Output
1628
Hint
結果四捨五入就可以了
Source
題目意思:
給出國王的N個城堡的座標,圍牆裡城堡距離至少L,求最小的圍牆長度,使得能把所有城堡包圍起來。
解題思路:
求城堡的凸包。注意:凸包頂點拐角處是圓弧不是直角,所以每個頂點圓弧的長度之和為一整個圓的周長。
先兩兩點計算距離,再加上圓周長,最後四捨五入即可。
(因為沒注意到top比凸包點數多一光榮貢獻兩血……)
#include<cstdio>
#include<iostream>
#include<vector>
#include<cmath>
#include<cstring>
#include<queue>
#include<algorithm>
#include<set>
#include<queue>
#define INF 0xfffffff
const int MAXN = 1010;
using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
struct Point
{
double x,y;
Point() {} Point(double _x,double _y)
{
x = _x;
y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
} //叉積
double operator ^(const Point &b)const
{
return x*b.y - y*b.x; //點積
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y; //繞原點旋轉角度B(弧度值),後x,y的變化
}
void transXY(double B)
{
double tx = x,ty = y;
x = tx*cos(B) - ty*sin(B);
y = tx*sin(B) + ty*cos(B);
}
};
/*
* 求凸包,Graham演算法
* 點的編號0~n-1
* 返回凸包結果Stack[0~top-1]為凸包的編號
*/
Point list[MAXN];
int Stack[MAXN],top;
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//相對於list[0]的極角排序
bool _cmp(Point p1,Point p2)
{
double tmp = (p1-list[0])^(p2-list[0]);
if(sgn(tmp) > 0) return true;
else if(sgn(tmp) == 0 && sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0) return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k = 0;
p0 = list[0]; //找最下邊的一個點
for(int i = 1; i < n; i++)
{
if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
{
p0 = list[i];
k = i;
}
}
swap(list[k],list[0]);
sort(list+1,list+n,_cmp);//排序
if(n == 1)
{
top = 1;
Stack[0] = 0;
return;
}
if(n == 2)
{
top = 2;
Stack[0] = 0;
Stack[1] = 1;
return ;
}
Stack[0] = 0;
Stack[1] = 1;
top = 2;
for(int i = 2; i < n; i++)
{
while(top > 1 && sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0)
top--;
Stack[top++] = i;
}
}
int main()
{
int n,l;
while(scanf("%d%d",&n,&l)!=EOF)
{
for(int i=0; i<n; ++i)
scanf("%lf%lf",&list[i].x,&list[i].y);
Graham(n);
double ans=0;
for(int i=0; i<top-1; ++i)
ans+=fabs(dist(list[Stack[i]],list[Stack[i+1]]));
ans+=fabs(dist(list[Stack[0]],list[Stack[top-1]]));
ans+=PI*2*l;
//cout<<ans<<endl;
//ans=int(ans+0.5);//四捨五入
printf("%d\n",int(ans+0.5));//不做四捨五入而直接寫成printf("%.0f\n",ans);也能AC
}
return 0;
}
/*
9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
*/
相關文章
- 【凸包 Graham法 點集排序】poj 1113 Wall排序
- 【凸包 Graham法 極角排序】poj 2007 Scrambled Polygon排序Go
- 求多邊形凸包(線性演算法)--陳氏凸包演算法--演算法
- HDU 4946 Area of Mushroom(凸包)OOM
- POJ 1584-A Round Peg in a Ground Hole(計算幾何-凸包、點到線段距離)
- HDU 3685 Rotational Painting(凸包+重心)AI
- POJ3660 Cow Contest【Floyd演算法 傳遞閉包】演算法
- POJ 基本演算法演算法
- SGU 277 Heroes(動態凸包維護)
- 無約束凸優化演算法優化演算法
- 斜率優化(凸包優化)DP問題acm優化ACM
- HDU 4667 Building Fence(求凸包的周長)UI
- 計算幾何(一):凸包問題(Convex Hull)
- [USACO5.1] 圈奶牛Fencing the Cows /【模板】二維凸包
- poj2486Apple Tree[樹形揹包!!!]APP
- P6810 「MCOI-02」Convex Hull 凸包 題解
- 凸優化優化
- 「管理數學基礎」3.1 凸分析:凸集與凸集分離定理、Farkas引理
- POJ 3360-Cow Contest(傳遞閉包)
- POJ1276Cash Machine[多重揹包可行性]Mac
- poj 3436 最大流的增廣路演算法演算法
- 凸集、凸函式定義及主要性質函式
- 為什麼凸問題的解集是凸集
- Paul Graham:撼動矽谷的人(譯文)
- UVA 10652 Board Wrapping(計算幾何基礎,求凸包)APP
- POJ 1511 Invitation Cards(最短路spfa演算法)演算法
- POJ3461-KMP演算法的簡單運用KMP演算法
- POJ 3565 Ants (最小權完美匹配 KM演算法)演算法
- Paul Graham:夢寐以求的程式語言
- POJ 2184 Cow Exhibition (01揹包變形 + 技巧 好題)
- Convex Set and Convex Function凸集與凸函式Function函式
- 凸優化問題優化
- 02-凸函式函式
- POJ 1523-SPF(Tarjan演算法-關節點)演算法
- poj1258--資料結構prim演算法資料結構演算法
- POJ 3318 Matrix Multiplication(隨機化演算法)隨機演算法
- poj2594Treasure Exploration【最小路徑覆蓋+floyd傳遞閉包】
- POJ 2195-Going Home(KM演算法/最小費用最大流演算法)Go演算法