POJ 2195-Going Home(KM演算法/最小費用最大流演算法)
Going Home
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 21730 | Accepted: 10990 |
Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
Sample Input
2 2 .m H. 5 5 HH..m ..... ..... ..... mm..H 7 8 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.... ...H.... 0 0
Sample Output
2 10 28
Source
題目意思:
N行M列,每人可分得一個房子,每人每走一步花費為1,求每人各回各家的最小花費。
解題思路:
這題有兩種思路可破:KM演算法和最小費用最大流演算法。
(一)
套Kuhn-Munkras演算法模板,建二分圖求解。
下面詳細講講建圖的過程:
①掃描讀入的圖,分別標記出人M和房屋H的位置座標;
②每個人與每間房屋一一對應,比如測試用例
5 5
HH..m
.....
.....
.....
mm..H
M的座標是A(1,5) B(5,1) C(5,2);H的座標是X(1,1) Y(1,2) Z(5,5);
那麼分別求出AX AY AZ BX BY BZ CX CY CZ路徑上對應花費的權值就是二分圖中對應邊的邊權。
因為是求最小權,所以建圖時邊的權值取相反數,最後所得的ans取相反數。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<malloc.h>
using namespace std;
typedef long long ll;
#define maxn 300
#define INF 0x3f3f3f3f
int nx,ny;//兩邊的點數
int g[maxn][maxn];//二分圖描述
int linker[maxn],lx[maxn],ly[maxn];//y中各點匹配狀態,x,y中的點標號
int slack[maxn];
bool visx[maxn],visy[maxn];
int ax[maxn],ay[maxn],bx[maxn],by[maxn];
char Map[maxn][maxn];
bool DFS(int x)
{
visx[x] = true;
for(int y = 1; y <= ny; y++)
{
if(visy[y])continue;
int tmp = lx[x] + ly[y] - g[x][y];
if(tmp == 0)
{
visy[y] = true;
if(linker[y] == -1 || DFS(linker[y]))
{
linker[y] = x;
return true;
}
}
else if(slack[y] > tmp)
slack[y] = tmp;
}
return false;
}
int KM()
{
memset(linker,-1,sizeof(linker));
memset(lx,0,sizeof(lx));
memset(ly,0,sizeof(ly));
for(int i = 0; i < nx; i++)
{
lx[i] = -INF;
for(int j = 1; j <= ny; j++)
if(g[i][j] > lx[i])
lx[i] = g[i][j];
}
for(int x = 1; x <= nx; x++)
{
for(int i = 1; i <= ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(DFS(x))break;
int d = INF;
for(int i = 1; i <= ny; i++)
if(!visy[i] && d > slack[i])
d = slack[i];
for(int i = 1; i <= nx; i++)
if(visx[i])
lx[i] -= d;
for(int i = 1; i <= ny; i++)
{
if(visy[i])ly[i] += d;
else slack[i] -= d;
}
}
}
int res = 0;
for(int i = 1; i <= nx; i++)
if(linker[i] != -1)
res += g[linker[i]][i];
return -res;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)&&n!=0&&m!=0)
{
/*for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
scanf("%d",&g[i][j]);
nx = ny = n;*/
memset(g,0,sizeof g);
nx=ny=0;//二分圖頂點的個數
for(int i=1; i<=n; i++)
scanf("%s",Map[i]+1);//讀入原圖
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
if(Map[i][j]=='m')
{
nx++;
ax[nx]=i;
ay[nx]=j;
}
else if(Map[i][j]=='H')
{
ny++;
bx[ny]=i;
by[ny]=j;
}
}
for(int i=1; i<=nx; i++)
for(int j=1; j<=ny; j++)
g[i][j]=-(abs(ax[i]-bx[j])+abs(ay[i]-by[j]));//建圖
printf("%d\n",KM());
}
return 0;
}
/**
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
**/
(二)
套最小費用最大流演算法模板,加超級源點和超級匯點網路流求解。
注意模板使用的時候,minCostMaxflow()的返回值。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#include<malloc.h>
using namespace std;
typedef long long ll;
#define maxn 300
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//節點總個數,節點編號從0~N-1
void init(int n)
{
N = n;
tol = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)//加邊
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s,int t)//找增廣路
{
queue<int>q;
for(int i = 0; i <= t+2; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost )
{
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -1)return false;
else return true;
}
//int minCostMaxflow(int s,int t,int &cost)
int minCostMaxflow(int s,int t)//最小費用最大流
{
int flow = 0;
int ans=0;
//cost = 0;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
{
edge[i].flow += Min;
edge[i^1].flow -= Min;
//cost += edge[i].cost * Min;
}
ans+=dis[t];
flow += Min;
}
return ans;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)&&n!=0&&m!=0)
{
int nx,ny,ax[maxn],ay[maxn],bx[maxn],by[maxn];
char Map[maxn][maxn];
nx=ny=0;//二分圖頂點的個數
for(int i=1; i<=n; i++)
scanf("%s",Map[i]+1);//讀入原圖
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
if(Map[i][j]=='m')
{
nx++;
ax[nx]=i;
ay[nx]=j;
}
else if(Map[i][j]=='H')
{
ny++;
bx[ny]=i;
by[ny]=j;
}
}
int s=0,t=nx+ny+1;//源點和匯點
init(t+1);//初始化
for(int i = 1; i <= nx; i++)
addedge(s,i,1,0);//源點向各個點加邊
for(int i = nx+1; i <= nx+ny; i++)
addedge(i,t,1,0);//匯點向各個點加邊
for(int i=1; i<=nx; i++)
for(int j=1; j<=ny; j++)
{
int va=(abs(ax[i]-bx[j])+abs(ay[i]-by[j]));
//cout<<i<<"->"<<nx+j<<"="<<va<<endl;
addedge(i,nx+j,1,va);//建圖
}
printf("%d\n",minCostMaxflow(s,t));
}
return 0;
}
/**
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
**/
相關文章
- POJ 2195 Going Home 最小費用最大流Go
- POJ 2195 Going Home (最小費用最大流)Go
- POJ 3565 Ants (最小權完美匹配 KM演算法)演算法
- POJ 3469-Dual Core CPU(Dinic 最大流/最小割演算法)演算法
- 網路中最小費用最大流
- poj 3436 最大流的增廣路演算法演算法
- KM演算法演算法
- poj2400 KM演算法二分圖的完美匹配演算法
- POJ 3308 Paratroopers 最小割、最大流OOP
- KM演算法小記演算法
- POJ 1459-Power Network(最大流-Edmond-Karp演算法)演算法
- 學習筆記----KM演算法筆記演算法
- 最大流 dinic演算法演算法
- POJ2387 Til the Cows Come Home【最短路 Dijkstra演算法】演算法
- POJ 2914-Minimum Cut(Stoer_Wagner最小割演算法)演算法
- POJ 1273-Drainage Ditches(最大流-Edmond-Karp演算法/模板)AI演算法
- POJ 基本演算法演算法
- 最大流 EdmondsKarp演算法演算法
- 網路最大流演算法演算法
- POJ 3436-ACM Computer Factory(最大流輸出路徑-Edmond-Karp演算法)ACM演算法
- 對KM演算法暫時性的理解演算法
- 網路最大流 Dinic演算法演算法
- KM演算法——二分圖的最佳匹配演算法
- 經典演算法-最大流問題演算法
- POJ3461-KMP演算法的簡單運用KMP演算法
- poj 3164 Command Network(最小樹形圖模板題)朱_ 劉演算法演算法
- 演算法 最小高度樹演算法
- 網路流(最大流,最小割)
- poj--3264Balanced Lineup+ST演算法求區間最大最小值演算法
- 最小生成樹——Prim演算法和Kruscal演算法演算法
- 最小生成樹:Kruskal演算法和Prim演算法演算法
- 最小生成樹-Prim演算法和Kruskal演算法演算法
- bzoj1834: [ZJOI2010]network 網路擴容(最小費用最大流)
- 【JAVA演算法】圖論演算法 --求最小生成樹Prim演算法Java演算法圖論
- poj1087 網路最大流
- 最小生成樹__Kurskal演算法演算法
- 最小生成樹__Prim演算法演算法
- 最小生成樹的演算法演算法